@article{VSGU_2009_2_a4,
author = {M. A. Lapshina},
title = {Norm equalization in rows of orthogonal matrix and uniform frames},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {51--59},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a4/}
}
M. A. Lapshina. Norm equalization in rows of orthogonal matrix and uniform frames. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 51-59. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a4/
[1] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2002 | MR
[2] Drabkova E. S., Novikov S. Ya., “Ob'em freima Parsevalya”, Vestnik Samarskogo gosudarstvennogo universiteta, 2007, no. 9/1(59), 91–106 | MR
[3] Casazza P. G., Leonhard N., The known equal norm Parseval frames as of 2005, Rezhim dostupa: http://www.math.missouri.edu/<nobr>$\sim$</nobr>pete/
[4] Kolmogorov A. N., “K obosnovaniyu metoda naimenshikh kvadratov”, Uspekhi matematicheskikh nauk, 1:1 (1946), 57–70 | MR | Zbl
[5] Linnik Yu. V., Metod naimenshikh kvadratov, Fizmatgiz, M., 1962, 352 pp. | Zbl
[6] Casazza P. G., Leon N., Frames with a given frame operator, Rezhim dostupa: http://www.math.missouri.edu/<nobr>$\sim$</nobr>pete/
[7] Casazza P. G., Leon N., Existence and construction of finite tight frames, Rezhim dostupa: http:www.math.missouri.edu/<nobr>$\sim$</nobr>pete/
[8] Casazza P. G., Custom Building Finite Frames, Rezhim dostupa: http:www.math.missouri.edu/<nobr>$\sim$</nobr>pete/ | MR
[9] Lapshina M. A., “Ravnomernye freimy v prostranstve $\mathbb{R}^N$”, Vestnik Samarskogo gosudarstvennogo universiteta, 2008, no. 6, 112–122
[10] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR