Rotation number like total characteristic of stability of Hill equation
    
    
  
  
  
      
      
      
        
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 26-32
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Hill equation is considered. After transition to polar coordinates differential equation on torus for polar corner, satisfying to Karateodori conditions is gained. We shall give basic results. 
Hill equation (with various multiplicators) is strongly stable (strongly unstable) then and only then, when the rotation number is nonintegral (integral) nonnegative number. 
Formula connecting the nonintegral rotation number with multiplicators of Hill equation is received.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
strong stability, differential equations on torus, the number of rotation, multiplicators.
                    
                  
                
                
                @article{VSGU_2009_2_a2,
     author = {A. A. Zhukova},
     title = {Rotation number like total characteristic of stability of {Hill} equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {26--32},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a2/}
}
                      
                      
                    TY - JOUR AU - A. A. Zhukova TI - Rotation number like total characteristic of stability of Hill equation JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2009 SP - 26 EP - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2009_2_a2/ LA - ru ID - VSGU_2009_2_a2 ER -
A. A. Zhukova. Rotation number like total characteristic of stability of Hill equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 26-32. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a2/
