Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 146-154
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is devoted to technique based on the model of forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis. Wavelet analysis is applied to the analysis of complex data and allows to reveal the various properties of a complex signal invisible at usual representation on a real time basis. We can judge about the degree of randomness of the process by the size of fractal dimension which reflects the number of accidents in the investigated interval.
Keywords:
forecast, risk, wavelet and fractal analysis
Mots-clés : technique, occupational traumatism.
Mots-clés : technique, occupational traumatism.
@article{VSGU_2009_2_a13,
author = {N. V. Muller},
title = {Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {146--154},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/}
}
TY - JOUR AU - N. V. Muller TI - Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2009 SP - 146 EP - 154 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/ LA - ru ID - VSGU_2009_2_a13 ER -
N. V. Muller. Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 146-154. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/
[1] Astafeva N. M., “Veivlet-analiz: osnovy teorii i primery primeneniya”, Uspekhi fizicheskikh nauk, 1996, no. 11, 1145–1171 | DOI
[2] Berezhnaya E. V., Berezhnoi V. I., Matematicheskie metody modelirovaniya ekonomicheskikh sistem, uchebnoe posobie, Finansy i statistika, M., 2001, 368 pp.
[3] Dremin I. M., Ivanov O. V., Nechitailo V. A., “Veivlety i ikh ispolzovanie”, Uspekhi fizicheskikh nauk, 2001, no. 5, 465–501 | DOI
[4] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR
[5] Morozov A. D., Vvedenie v teoriyu fraktalov, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 160 pp.
[6] Mandelbrot B., Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, M., 2002, 656 pp.