Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 146-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to technique based on the model of forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis. Wavelet analysis is applied to the analysis of complex data and allows to reveal the various properties of a complex signal invisible at usual representation on a real time basis. We can judge about the degree of randomness of the process by the size of fractal dimension which reflects the number of accidents in the investigated interval.
Keywords: forecast, risk, wavelet and fractal analysis
Mots-clés : technique, occupational traumatism.
@article{VSGU_2009_2_a13,
     author = {N. V. Muller},
     title = {Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {146--154},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/}
}
TY  - JOUR
AU  - N. V. Muller
TI  - Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 146
EP  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/
LA  - ru
ID  - VSGU_2009_2_a13
ER  - 
%0 Journal Article
%A N. V. Muller
%T Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 146-154
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/
%G ru
%F VSGU_2009_2_a13
N. V. Muller. Forecasting of the risk of an occupational traumatism by means of wavelet and fractal analysis. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 146-154. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a13/

[1] Astafeva N. M., “Veivlet-analiz: osnovy teorii i primery primeneniya”, Uspekhi fizicheskikh nauk, 1996, no. 11, 1145–1171 | DOI

[2] Berezhnaya E. V., Berezhnoi V. I., Matematicheskie metody modelirovaniya ekonomicheskikh sistem, uchebnoe posobie, Finansy i statistika, M., 2001, 368 pp.

[3] Dremin I. M., Ivanov O. V., Nechitailo V. A., “Veivlety i ikh ispolzovanie”, Uspekhi fizicheskikh nauk, 2001, no. 5, 465–501 | DOI

[4] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR

[5] Morozov A. D., Vvedenie v teoriyu fraktalov, Institut kompyuternykh issledovanii, M.–Izhevsk, 2002, 160 pp.

[6] Mandelbrot B., Fraktalnaya geometriya prirody, Institut kompyuternykh issledovanii, M., 2002, 656 pp.