Principle of superposition of solutions for the problem of plane plasticity
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 140-145
Cet article a éte moissonné depuis la source Math-Net.Ru
The principle of superposition of solutions for the system of plane ideal plasticity of Mises media is considered. A new exact solution as a superposition of foregone Prandtl conclusions for collapsed strata and the solution for uniformly loaded circular aperture is issued. The mechanical sense of the obtained solution is discussed.
Keywords:
principle of superposition, Mezis medium.
@article{VSGU_2009_2_a12,
author = {L. V. Yakhno},
title = {Principle of superposition of solutions for the problem of plane plasticity},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {140--145},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a12/}
}
L. V. Yakhno. Principle of superposition of solutions for the problem of plane plasticity. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 140-145. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a12/
[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968, 687 pp. | MR
[2] Kachanov L. M., Osnovy teorii plastichnosti, Nauka, M., 1969, 420 pp.
[3] Senashov S. I., Vinogradov A. M., “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburgh Math. Soc.(2), 3:3 (1988), 415–439 | DOI | MR | Zbl
[4] Hill R., The mathematical theory of plasticity, Calderon press, Oxford, 1950 | MR