Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a material with the linear-fractional creep principle
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 123-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximate solution of the task about the crack, under synchronizing action of tensile and shearing loading, in the material, submitting to linear-fractional creep principle in the supposition of realization of plane deformation state is presented. Analytical solution of the task of defining strained deformation state in close proximity to the tip of the crack in the specimen under synchronizing action of tensile and shearing loading for different in value of the coefficient of the heterogeneity of loading, defining the sort of loading is found. It is shown that the stress field consists of six sectors inside of which the components of stress tensor are defined by different functional dependency. The boundaries of the sectors introduced are found numerically from the solution of the system of transcendental equations. The comparison of the approximate analytical solution with the numerical solution of the task for the material, sequent to the staid law of Bail Norton of the linear-fractional creep principle in the extreme case in the extreme case, when the index of non-linearity of the material ultimately grows is given.
Keywords: combined mode loading, coefficient of the heterogeneity of loading, strained deformation state in close proximity to the tip of the crack, linear – fractional creep principle.
@article{VSGU_2009_2_a11,
     author = {L. V. Stepanova and T. B. Elekina},
     title = {Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a~material with the linear-fractional creep principle},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {123--139},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2009_2_a11/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - T. B. Elekina
TI  - Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a material with the linear-fractional creep principle
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2009
SP  - 123
EP  - 139
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2009_2_a11/
LA  - ru
ID  - VSGU_2009_2_a11
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A T. B. Elekina
%T Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a material with the linear-fractional creep principle
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2009
%P 123-139
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2009_2_a11/
%G ru
%F VSGU_2009_2_a11
L. V. Stepanova; T. B. Elekina. Combined mode loading (normal tracture model and in-plane shear) of the element of construction with in a material with the linear-fractional creep principle. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, no. 2 (2009), pp. 123-139. http://geodesic.mathdoc.fr/item/VSGU_2009_2_a11/

[1] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966, 752 pp. | Zbl

[2] Shesterikov S. A., Yumasheva M. A., “Konkretizatsiya uravnenii sostoyaniya v teorii polzuchesti”, Izv. AN SSSR. MTT, 1984, no. 1, 86–92

[3] Shesterikov S. A., Lebedev S.Yu., Yumasheva M. A., “O dlitelnoi prochnosti”, Problemy mekhaniki sploshnoi sredy, K 60-letiyu so dnya rozhdeniya V. P. Myasnikova, Izd-vo IAPU DVO RAN, Vladivostok, 1996, 80–85

[4] Arshakuni A. L., Shesterikov S. A., “Prognozirovanie dlitelnoi prochnosti zharoprochnykh metallicheskikh materialov”, Izv. RAN. MTT, 1994, no. 3, 126–141

[5] Arshakuni A. L., “Prognozirovanie dlitelnoi prochnosti metallov”, Izv. RAN. MTT, 1997, no. 6, 126–135

[6] Lokoschenko A. M., Nazarov V. V., Platonov D. O. i dr., “Analiz kriteriev dlitelnoi prochnosti metallov pri slozhnom napryazhennom sostoyanii”, Izv. RAN. MTT, 2003, no. 2, 139–149

[7] Kashelkin V. V., Kuznetsova I.A., Shesterikov S.A., “Metod prognozirovaniya dlitelnoi prochnosti khromonikelevykh austenitnykh stalei”, Izv. RAN. MTT, 2004, no. 1, 182–187

[8] Shesterikov S. A., Stepanova L. V., “Analiz napryazhenno-deformirovannogo sostoyaniya v okrestnosti vershiny treschiny v usloviyakh polzuchesti”, Izv. RAN. MTT, 1995, no. 1, 96–103

[9] Astafev V. I., Stepanova L.V., Shesterikov S.A., “Asimptotika napryazhenno-deformirovannogo sostoyaniya v okrestnosti vershiny treschiny v usloviyakh polzuchesti”, Vestnik SamGU, 1995, Spets. vypusk, 59–64

[10] Astafev V. I., Stepanova L. V., “Vliyanie povrezhdennosti materiala na napryazhenno-deformirovannoe sostoyanie v okrestnosti vershiny treschiny dlya drobno-lineinogo zakona polzuchesti”, Vestnik SamGU, 1997, no. 2, 135–141

[11] Boil Dzh., Spens Dzh., Analiz napryazhenii v konstruktsiyakh pri polzuchesti, Mir, M., 1986

[12] Pan J., Lin P. C., “Analytical solutions for crack-tip sectors in perfectly plastic Mises materials under mixed in-plane and out-of-plane shear loading conditions”, Engng. Fracture Mechanics, 73 (2006), 1797–1813 | DOI

[13] Rahman M., Hancock J. W., “Elastic perfectly-plastic asymptotic mixed mode crack tip fields in plane stress”, Int. J. Solids and Structures, 43 (2006), 3692–3704 | DOI | Zbl

[14] Suresh S. B., Fatigue of material, Cambridge University Press, Cambridge, 1991, 573 pp.

[15] Shih C. F., “Small-scale yielding analysis of mixed-mode plane strain crack problems”, Fracture Analysis, 1974, no. 560, 187–210

[16] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl

[17] Hutchinson J. W., “Singular behaviour at the end of tensile crack in a harderning material”, J. Mech. Phys. Solids, 16 (1968), 13–31 | DOI | Zbl

[18] Astafev V. I., Radaev Yu. N., Stepanova L. V., Nelineinaya mekhanika razrusheniya, Izd-vo “Samarskii universitet”, Samara, 2001, 632 pp.

[19] Stepanova L .V., Matematicheskie metody mekhaniki razrusheniya, Izd-vo “Samarskii universitet”, Samara, 2006, 232 pp.