Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a9, author = {Y. Touail and A. Jaid and D. El Moutawakil}, title = {A common fixed-point result via a supplemental function with an application}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {790--798}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a9/} }
TY - JOUR AU - Y. Touail AU - A. Jaid AU - D. El Moutawakil TI - A common fixed-point result via a supplemental function with an application JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 790 EP - 798 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a9/ LA - en ID - VSGTU_2024_28_4_a9 ER -
%0 Journal Article %A Y. Touail %A A. Jaid %A D. El Moutawakil %T A common fixed-point result via a supplemental function with an application %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 790-798 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a9/ %G en %F VSGTU_2024_28_4_a9
Y. Touail; A. Jaid; D. El Moutawakil. A common fixed-point result via a supplemental function with an application. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 790-798. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a9/
[1] Aghajani A., Pourhadi E., Trujillo J., “Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces”, Fract. Calc. Appl. Anal., 16:4 (2013), 962–977 | DOI | Zbl
[2] Ali A. A., Amar A. B., “Measures of weak noncompactness, nonlinear Leray–Schauder alternatives in Banach algebras satisfying condition (p) and an application”, Quaest. Math., 39:3 (2016), 319–340 | DOI | Zbl
[3] Ammar A., Jeribi A., “Measures of noncompactness and essential pseudospectra on Banach space”, Math. Methods Appl. Sci., 37:3 (2014), 447–452 | DOI | Zbl
[4] Arab R., Allahyari R., Haghighi A. S., “Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness”, Appl. Math. Comput., 246 (2014), 283–291 | DOI | Zbl
[5] Banaś J., “Measures of noncompactness in the study of solutions of nonlinear differential and integral equations”, Open Math., 10:6 (2012), 2003–2011 | DOI | Zbl
[6] Lixin C., Qingjin C., Qinrui S., et al., “A new approach to measures of noncompactness of Banach spaces”, Stud. Math., 240 (2018), 21–45 | DOI | Zbl
[7] Mursaleen M., “Application of measure of noncompactness to infinite systems of differential equations”, Can. Math. Bull., 56:2 (2013), 388–394 | DOI | Zbl
[8] Nikbakhtsarvestani F., Vaezpour S. M., Asadi M., “$ F (\psi,\varphi)$-Contraction in terms of measure of noncompactness with application for nonlinear integral equations”, J. Inequal. Appl., 2017 (2017), 271 | DOI | Zbl
[9] Vetro C., Vetro F., “On the existence of at least a solution for functional integral equations via measure of noncompactness”, Banach J. Math. Anal., 11:3 (2017), 497–512 | DOI | Zbl
[10] Kuratowski K., “Sur les espaces complets”, Fundam. Math., 15 (1930), 301–309 (In French) | Zbl
[11] Darbo G., “Punti uniti in trasformazioni a codominio non compatto”, Rend. Sem. Mat. Univ. Padova, 24 (1955), 84–92 (In Italian) | Zbl
[12] Schauder J., “Der Fixpunktsatz in Funktionalräumen”, Stud. Math., 2 (1930), 171–180 (In German) | Zbl
[13] Banach St., “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1922), 133–181 (In French) | Zbl
[14] Jungck G., Rhoades B. E., “Fixed points for set valued functions without continuity”, Indian J. Pure Appl. Math., 29:3 (1998), 227–238 | Zbl
[15] Touail Y., El Moutawakil D., “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, Int. J. Nonlinear Anal. Appl., 12:1 (2021), 903–911 | DOI
[16] Touail Y., El Moutawakil D., Bennani S., “Fixed point theorems for contractive self-mappings of a bounded metric space”, J. Funct. Spaces, 2019:2019, 4175807 | DOI | Zbl
[17] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ric. Mat, 71:2 (2022), 315–323 | DOI | Zbl
[18] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-Eur. J. Math., 15:4 (2022), 2250080 | DOI | Zbl
[19] Touail Y., El Moutawakil D., “Fixed point theorems for new contractions with application in dynamic programming”, Vestnik St. Petersb. Univ. Math., 54:2 (2021), 206–212 | DOI | Zbl
[20] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonlinear Anal. Appl., 12:2 (2021), 1801–1809 | DOI
[21] Touail Y., Jaid A., El Moutawakil D., “New contribution in fixed point theory via an auxiliary function with an application”, Ric. Mat., 72:1 (2023), 181–191 | DOI | Zbl
[22] Touail Y., Jaid A., El Moutawakil D., “Fixed point results for condensing operators via measure of non-compactness”, Vestnik St. Petersb. Univ. Math., 55 (2022), 347–352 | DOI | Zbl
[23] Banaś, J., Goebel K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, New York, Basel, 1980, vii+97 pp. | Zbl
[24] Sadovskii B. N., “A fixed-point principle”, Funct. Anal. Appl., 1 (1967), 151–153 | DOI | Zbl
[25] Hajji A., Hanebaly E., “Commuting mappings and $\alpha$-compact type fixed point theorems in locally convex spaces”, Int. J. Math. Anal., 1:14 (2007), 661–680 | Zbl