Exact solution to the velocity field description for~Couette--Poiseulle flows of binary liquids
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 759-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact solution of the Oberbeck–Boussinesq equations for describing steady flows of binary Poiseuille-type fluids is proposed and studied. The fluid motion is considered in the infinite horizontal layer. Shear flows are described by overdetermined system of equations. Nontrivial exact solution for the Oberbeck–Boussinesq system exists in the class of velocities with two vector components and depends only on the transverse coordinate. This structure of the velocity vector coordinates ensures naturally the fulfillment of the continuity equation as an “extra” equation. The pressure field, the temperature field, and the concentration field of the dissolved substance are described by linear functions of horizontal (longitudinal) coordinates with coefficients that functionally depend on the third coordinate. Fluid layer, as it is shown, can have two points where the velocity becomes zero. In this case, the spiral flow is realized (the hodograph of the velocity vector has a turning point).
Keywords: binary fluid, counterflows, overdeterminated system
Mots-clés : viscous fluid, Couette flow, Poiseuille flow, convection, diffusion, exact solution
@article{VSGTU_2024_28_4_a7,
     author = {V. V. Bashurov and N. V. Burmasheva and E. Yu. Prosviryakov},
     title = {Exact solution to the velocity field description {for~Couette--Poiseulle} flows of binary liquids},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {759--772},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a7/}
}
TY  - JOUR
AU  - V. V. Bashurov
AU  - N. V. Burmasheva
AU  - E. Yu. Prosviryakov
TI  - Exact solution to the velocity field description for~Couette--Poiseulle flows of binary liquids
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 759
EP  - 772
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a7/
LA  - en
ID  - VSGTU_2024_28_4_a7
ER  - 
%0 Journal Article
%A V. V. Bashurov
%A N. V. Burmasheva
%A E. Yu. Prosviryakov
%T Exact solution to the velocity field description for~Couette--Poiseulle flows of binary liquids
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 759-772
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a7/
%G en
%F VSGTU_2024_28_4_a7
V. V. Bashurov; N. V. Burmasheva; E. Yu. Prosviryakov. Exact solution to the velocity field description for~Couette--Poiseulle flows of binary liquids. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 759-772. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a7/

[1] Gershuni G. Z., Zhukhovitskii E. M., Convective Stability of Incompressible Fluids, Israel Program for Scientific Translations, Keter Publishing House, Jerusalem, 1976, 330 pp.

[2] Aristov S.N., Schwartz K.G., Vikhrevye techeniia advektivnoi prirody vo vrashchaiushchemsia sloe zhidkosti [Vortical Flows of Advective Nature in a Rotating Fluid Layer], Perm State Univ., Perm, 2006, 153 pp. (In Russian)

[3] Aristov S.N., Schwartz K.G., Vikhrevye techeniia v tonkikh sloiakh zhidkosti [Vortical Flows in Thin Fluid Layers], Vyatka State Univ. Publ., Kirov, 2011, 207 pp. (In Russian)

[4] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics, Clarendon Press, Oxford, 1961, xix+652 pp. | Zbl

[5] Pedlosky J., Geophysical Fluid Dynamics, Springer-Verlag, New York, Heidelberg, Berlin, 1979, xii+624 pp. | Zbl

[6] Polyanin A. D., Kutepov A. M., Kazenin D. A., Vyazmin A. V., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, CRC Pres, London, 2001, 408 pp. | DOI

[7] Shliomis M.I., “Convective instability of a ferrofluid”, Fluid Dyn., 8:6 (1973), 957–961 | DOI

[8] Drazin P. G., Reid W. H., Hydrodynamic Stability, Cambridge Univ., Cambridge, 2004, xx+605 pp. | DOI | Zbl

[9] Dikii L. A., Hydrodynamical Stability and Dynamics of Atmosphere, Gidrometeoizdat, Leningrad, 1976, 110 pp.

[10] Bulatov V. V., Vladimirov Yu. V., Volny v stratifitsirovannykh sredakh [Waves in Stratified Medium], Nauka, Moscow, 2015, 735 pp. (In Russian)

[11] Bulgakov S. N., Korotaev G. K., “Analytical model of jet circulation in confined water bodies”, Morsk. Gidrofiz. Zh., 1987, no. 3, 434–446

[12] Aristov S. N., Shvarts K. G., “On the influence of salinity exchange on the circulation of a fluid in an enclosed basin”, Sov. J. Phys. Ocean., 2:4 (1991), 293–298 | DOI

[13] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and Its Applications, 22, North-Holland, Amsterdam, 1990, xii+309 pp. | Zbl

[14] de Groot S. R., Mazur P., Non-equilibrium Thermodynamics, Series in Physics, North-Holland, Amsterdam, 1962, x+510 pp. | Zbl

[15] Dufour L., “Über die Diffusion der Gase durch poröse Wände und die sie begleitenden Temperaturveränderungen”, Ann. Phys., 224:3 (1873), 490–492 | DOI

[16] Soret Ch., “Sur l'état d'équilibre que prend, au point de vue de sa concentration, une dissolution saline primitivement homogène dont deux parties sont portées à des températures différentes”, C. R. Arch. Sci. Phys. Natur., Genève, 2 (1879), 48–61

[17] Kovalenko A. V., Uzdenova A. M., Ovsyannikova A. V., et al., “Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022), 520–543 (In Russian) | DOI | Zbl

[18] Bashurov V. V., Prosviryakov E. Yu., “Steady thermo-diffusive shear Couette flow of incompressible fluid. Velocity field analysis”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021), 763–775 | DOI | Zbl

[19] Burmasheva N. V., Prosviryakov E. Yu., “Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect”, Bulletin of Irkutsk State Univ., Ser. Mathematics, 37 (2021), 17–30 | DOI | Zbl

[20] Burmasheva N. V., Prosviryakov E. Yu., “Influence of the Dufour effect on shear thermal diffusion flows”, Dynamics, 2:4 (2022), 367–379 | DOI

[21] Ershkov S. V., Burmasheva N. V., Leshchenko D. D., Prosviryakov E. Yu., “Exact solutions of the Oberbeck–Boussinesq equations for the description of shear thermal diffusion of newtonian fluid flows”, Symmetry, 15:9 (2023), 1730 | DOI

[22] Ershkov S. V., Prosviryakov E. Yu., Burmasheva N. V, Christianto V., “Solving the hydrodynamical system of equations of inhomogeneous fluid flows with thermal diffusion: A review”, Symmetry, 15:10 (2023), 1825 | DOI

[23] Shliomis M. I., Smorodin B. L., “Onset of convection in colloids stratified by gravity”, Phys. Rev. E, 71 (2005), 036312 | DOI

[24] Siva Ramana N., Sivagnana Prabhua K. K., Kandasamyb R., “Soret and dufour effects on MHD free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface: Group theory transformation”, J. Appl. Mech. Tech. Phys., 53:6 (2012), 78–87 | DOI | Zbl

[25] Ostroumov G. A., Free Convection under the Condition of the Internal problem, NACA Technical Memorandum 1407, NACA, Washington, 1958, 239 pp. https://ntrs.nasa.gov/citations/20030068786

[26] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 7:3 (1966), 43–44 | DOI

[27] Pukhnachev V. V., “Non-stationary analogues of the Birikh solution”, Izv. Alt. Gos. Univ., 2011, no. 1–2, 62–69 (In Russian)

[28] Prigogine I., Defay R., Chemical Thermodynamics, Longmans, Green and Co., London, New York, Toronto, 1954, 584 pp.

[29] Andreev V. K., Birikh solutions to convection equations and some of its extensions, The ICM SB RAS Preprint no. 1–10, Krasnoyarsk, 2010, 68 pp. (In Russian)

[30] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI

[31] Andreev V. K., Gaponenko Ya. A., Goncharova O. N., Pukhnachev V. V., Mathematical models of convection, De Gruyter Studies in Mathematical Physics, 5, De Gryuter, Berlin, Boston, 2012, xv+417 pp. | DOI | Zbl

[32] Burmasheva N. V., Prosviryakov E. Yu., “Exact solutions for steady convective layered flows with a spatial acceleration”, Russian Math. (Iz. VUZ), 65:7 (2021), 8–16 | DOI | Zbl

[33] Chernatynskii V. I., Shliomis M. I., “Convection near critical Rayleigh numbers with an almost vertical temperature gradient”, Fluid Dyn., 8:1 (1973), 55–61 | DOI

[34] Shliomis M. I., Yakushin V. I., “Convection in a two-layer binary system with evaporation”, Uch. Zap. Permsk. Gos. Univ., Ser. Gidrodinamika, 4, Perm State Univ., Perm, 1972, 129–141 (In Russian)

[35] Smorodin B. L., Cherepanov I. N., Myznikova B. I., Shliomis M. I., “Traveling-wave convection in colloids stratified by gravity”, Phys. Rev. E, 84:2 (2011), 026305 | DOI

[36] Shliomis M. I., “Magnetic fluids”, Sov. Phys. Usp., 17:2 (1974), 153–269 | DOI

[37] Smith M. K., Davis S. H., “Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities”, J. Fluid Mech., 132 (1983), 119–144 | DOI | Zbl

[38] Ortiz-Pérez A. S., Dávalos-Orozco L. A., “Convection in a horizontal fluid layer under an inclined temperature gradient”, Phys. Fluids, 28:3 (2011), 23 | DOI

[39] Burmasheva N. V., Prosviryakov E. Yu., “Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 528–541 | DOI | Zbl

[40] Schwarz K. G., “Stability of thermocapillary advective flow in a slowly rotating liquid layer under microgravity conditions”, Fluid Dyn., 47:1 (2012), 37–49 | DOI | Zbl

[41] Knutova N. S., Schwarz K. G., “A study of behavior and stability of an advective thermocapillary flow in a weakly rotating liquid layer under microgravity”, Fluid Dyn., 50:3 (2015), 340–350 | DOI | Zbl

[42] Napolitano L. G., “Plane Marangoni–Poiseulle flow of two immiscible fluids”, Acta Astronaut., 7:4–5 (1980), 461–478 | DOI | Zbl

[43] Bénard H., Les tourbillons cellulaires dans une nappe liquide propageant de la chaleur par convection, en régime permanent, Gauthier-Villars, Paris, 1901, 88 pp. https://archive.org/details/lestourbillonsce00bena

[44] Bénard H., “Étude expérimentale des courants de convection dans une nappe liquide. – R\egime permanent: tourbillons cellulaires”, J. Phys. Theor. Appl., 9:1 (1900), 513–524 | DOI

[45] Bénard H., “Les tourbillons cellulaires dans une nappe liquide. – Méthodes optiques d'observation et d'enregistrement”, J. Phys. Theor. Appl., 10:1 (1901), 254–266 | DOI

[46] Aristov S. N., Prosviryakov E. Yu., “On laminar flows of planar free convection”, Rus. J. Nonlin. Dyn., 9:4 (2013), 651–657 | DOI | Zbl

[47] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 736–751 (In Russian) | DOI | Zbl

[48] Burmasheva N. V., Prosviryakov E. Yu., “Thermocapillary convection of a vertical swirling liquid”, Theor. Found. Chem. Eng., 54:1 (2020), 230–239 | DOI

[49] Burmasheva N. V., Prosviryakov E. Yu., “Exact solution for Couette-type steady convective concentration flows”, J. Appl. Mech. Techn. Phys., 62:7 (2021), 1199-1210 | DOI | Zbl

[50] Burmasheva N. V., Prosviryakov E. Yu., “On Marangoni shear convective flows of inhomogeneous viscous incompressible fluids in view of the Soret effect”, J. King Saud Univ. Sci., 32:8 (2020), 3364–3371 | DOI

[51] Burmasheva N. V., Privalova V. V., Prosviryakov E. Yu., “Layered Marangoni convection with the Navier slip condition”, Sādhanā, 46 (2021), 55 | DOI

[52] Hagen G., “Über die Bewegung des Wassers in engen cylindrischen Röhren”, Ann. Phys., 122:3 (1839), 423–442 | DOI

[53] Poiseuille J.-L.-M., “Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres”, C. R. Hebd. Séances Acad. Sci., 11 (1840), 961–967

[54] Poiseuille J.-L.-M., “Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres”, C. R. Hebd. Séances Acad. Sci., 11 (1840), 1041–1048

[55] Poiseuille J.-L.-M., “Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres”, C. R. Hebd. Séances Acad. Sci., 12 (1841), 112–115

[56] Couette M., “Études sur le frottement des liquids”, Ann. Chim. Phys., 6-21 (1890), 433–510