Stochastic superelastic properties of materials with phase transformations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 721-739.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is devoted to the impact of stochastic isothermal phase transformations in an unstable material on its superelastic hardening. A stochastic differential equation is derived to describe the dynamics of nucleation, growth of the new phase volume, and its interaction with the parent phase, depending on the level of irreversible structural deformations. Macroscopic constitutive relations are established for the unstable material, incorporating the stochastic nature of phase transformations and their dependence on structural deformations. Effective elastic moduli of the material are calculated based on these relations. Stochastic differential equations for direct and reverse phase transitions are formulated. Numerical simulations demonstrate strong agreement with experimental data, validating the proposed model.
Keywords: phases, macroscopic properties, elastic moduli, statistical homogeneity, structural deformations, ergodicity
Mots-clés : structure, phase transition, effective relations
@article{VSGTU_2024_28_4_a5,
     author = {L. A. Saraev},
     title = {Stochastic superelastic properties of materials with phase transformations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {721--739},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a5/}
}
TY  - JOUR
AU  - L. A. Saraev
TI  - Stochastic superelastic properties of materials with phase transformations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 721
EP  - 739
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a5/
LA  - ru
ID  - VSGTU_2024_28_4_a5
ER  - 
%0 Journal Article
%A L. A. Saraev
%T Stochastic superelastic properties of materials with phase transformations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 721-739
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a5/
%G ru
%F VSGTU_2024_28_4_a5
L. A. Saraev. Stochastic superelastic properties of materials with phase transformations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 721-739. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a5/

[1] Isupova I. L., Trusov P. V., “Mathematical modeling of phase transformations in steel under thermomechanical loading”, PNRPU Mechanics Bulletin, 2013, no. 3, 126–156 (In Russian)

[2] Mishustin I. V., Movchan A. A., “Modeling of phase and structure transformations occurring in shape memory alloys under nonmonotonically varying stresses”, Mech. Solids, 49:1 (2014), 27–39 | DOI

[3] Mishustin I. V., Movchan A. A., “Analog of the plastic flow theory for describing martensitic inelastic strains in shape memory alloys”, Mech. Solids, 50:2 (2015), 176–190 | DOI

[4] “Experimental study of the interaction of phase and structural deformations in alloys with shape memory”, Mekh. Kompoz. Mater. Konstr., 22:1 (2016), 85–98 (In Russian)

[5] Movchan A. A., Sil'chenko A. L., Kazarina S. A., “Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys”, Russ. Metall., 2017:10 (2017), 779–784 | DOI

[6] Trusov P. V., Volegov P. S., Isupova I. L., et al., “Multilevel model for describing solid phase transformations in multicomponent alloys”, Vestnik Permskogo Nauchnogo Tsentra UrO RAN, 2016, no. 4, 82–90 (In Russian)

[7] Tikhomirova K. A., “Isothermal deformation of shape memory alloy in different temperature ranges. Uniaxial case”, Mekh. Kompoz. Mater. Konstr., 23:2 (2017), 263–282 (In Russian)

[8] Tikhomirova K. A., “Phenomenological modeling of phase and structural deformations in shape memory alloys. One-dimensional case”, Computational Continuum Mechanics, 11:1 (2018), 36–50 (In Russian) | DOI

[9] Tikhomirova K. A., “Experimental and theoretical study of the relationship between phase and structural deformations in alloys with shape memory”, PNRPU Mechanics Bulletin, 2018, no. 1, 40–57 (In Russian) | DOI

[10] Mutter D., Nielaba P., “Simulation of the shape memory effect in a NiTi nano model system”, J. Alloys Comp., 577, Suppl. 1 (2013), S83–S87 | DOI

[11] Auricchio F., Bonetti E., Scalet G., Ubertini F., “Theoretical and numerical modeling of shape memory alloys accounting for multiple phase transformations and martensite reorientation”, Int. J. Plasticity, 59 (2014), 30–54 | DOI

[12] Yu C., Kang G., Kan Q., “Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation”, Int. J. Plasticity, 54 (2014), 132–162 | DOI

[13] Elibol C., Wagner M. F.-X., “Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression–shear”, Mater. Sci. Eng. A, 621 (2015), 76–81 | DOI

[14] Lobo P. S., Almeida J., Guerreiro L., “Shape memory alloys behaviour: A review”, Procedia Eng., 114 (2015), 776–783 | DOI

[15] Yoo Y.-I., Kim Y.-J., Shin D.-K., Lee J.-J., “Development of martensite transformation kinetics of NiTi shape memory alloys under compression”, Int. J. Solids Struct., 64–65 (2015), 51–61 | DOI

[16] Cisse C., Zaki W., Ben Zineb T., “A review of constitutive models and modeling techniques for shape memory alloys”, Int. J. Plasticity, 76 (2016), 244–284 | DOI

[17] Fabrizio M., Pecoraro M., Tibullo V., “A shape memory alloy model by a second order phase transition”, Mech. Research Commun., 74 (2016), 20–26 | DOI

[18] Ilyina E. A., Saraev L. A., “Modeling of phase transformations and superelastic hardening of unstable materials”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:3 (2018), 407–429 (In Russian) | DOI | Zbl

[19] Ilyina E. A., Saraev L. A., “Effect of the kinetics of phase transformations on the superelastic hardening of an unstable material”, Sovrem. Mater. Tekhnika Tekhnol., 2017, no. 7, 28–38 (In Russian)

[20] Saraev L. A., Matematicheskoe modelirovanie uprugoplasticheskikh svoistv mnogokomponentnykh kompozitsionnykh materialov [Mathematical Modeling of Elastoplastic Properties of Multicomponent Composite Materials], Samara Scientific Center, Samara, 2017, 222 pp. (In Russian)

[21] Saraev L. A., “On the theory of elasticity of microinhomogeneous media with account for stochastic changes in the connectivity of constituent components”, PNRPU Mechanics Bulletin, 2021, no. 2, 132–143 (In Russian) | DOI

[22] Cahn R. W., Haasen P., Physical Metallurgy, North-Holland Physics Publ., Amsterdam, 1983, xxxiv+1957 pp.

[23] Kuznetsov D. F., Stokhasticheskie differentsial'nye uravneniia: teoriia i praktika chislennogo resheniia [Stochastic Differential Equations: Theory and Practice of Numerical Solution], Polytechnic Univ., St. Petersburg, 2007, 777 pp. (In Russian) | DOI

[24] Belyaev S. P., Volkov A. E., Ermolaev V. A., et al., Materialy s effektom pamiati formy [Shape Memory Materials], v. 3, NIIKh SPbGU, St. Petersburg, 1998, 474 pp. (In Russian)