Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2024_28_4_a2, author = {Kh. M. Shadimetov and A. K. Boltaev}, title = {Optimization of the error in exponential-trigonometric interpolation formula}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {665--681}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a2/} }
TY - JOUR AU - Kh. M. Shadimetov AU - A. K. Boltaev TI - Optimization of the error in exponential-trigonometric interpolation formula JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2024 SP - 665 EP - 681 VL - 28 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a2/ LA - ru ID - VSGTU_2024_28_4_a2 ER -
%0 Journal Article %A Kh. M. Shadimetov %A A. K. Boltaev %T Optimization of the error in exponential-trigonometric interpolation formula %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2024 %P 665-681 %V 28 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a2/ %G ru %F VSGTU_2024_28_4_a2
Kh. M. Shadimetov; A. K. Boltaev. Optimization of the error in exponential-trigonometric interpolation formula. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 665-681. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a2/
[1] Ahlberg J. H., Nilson E. N., Walsh J. L., The Theory of Splines and Their Applications, Mathematics in Science and Engineering, 38, Academic Press, New York, 1967, xi+284 pp. | DOI | Zbl
[2] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitel'noi matematike [Splines in Numerical Mathematics], Nauka, Moscow, 1976, 248 pp. (In Russian) | Zbl
[3] Zav'yalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii [Methods of Spline Functions], Nauka, Moscow, 1980, 352 pp. (In Russian) | Zbl
[4] Nürnberger G., Approximation by Spline Functions, Springer-Verlag, Berlin, 1989, xi+243 pp. | Zbl
[5] Ignatev M. I., Pevniy A. B., Natural'nye splainy mnogikh peremennykh [Natural Splines of Many Variables], Nauka, Leningrad, 1991, 127 pp. (In Russian) | Zbl
[6] Samarsky A. A., Vvedenie v chislennye metody [An Introduction to Numerical Methods], Nauka, Moscow, 1987, 288 pp. (In Russian) | Zbl
[7] Burden A. M., Faires J. D., Burden R. L., Numerical Analysis, Cengage Learning, Boston, MA, 2016, xvi+896 pp.
[8] Duchon J., “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”, Constructive Theory of Functions of Several Variables, Lecture Notes in Mathematics, 571, 1977, 85-100 | DOI | Zbl
[9] Bojanov B. D., Hakopian H. A., Sahakian A. A., Spline Functions and Multivariate Interpolations, Mathematics and its Applications, Kluwer Academic Publ., Dordrecht, 1993, ix+276 pp. | Zbl
[10] Bezhaev A. Yu., Vasilenko V. A., Variational Theory of Splines, Kluwer Academic Publ., Dordrecht, 2001, xvii+280 pp. | Zbl
[11] Cheney E. W., Kincaid D., Numerical Mathematics and Computing, Brooks Cole, USA, 2013, 700 pp.
[12] Schoenberg I. J., Cardinal Spline Interpolation, CBMS-NSF Reg. Conf. Ser. Appl. Math., 12, SIAM, Philadelphia, Pa., 1973, vi+125 pp. | Zbl
[13] Sobolev S. L., Vaskevich V. L., The Theory of Cubature Formulas, Mathematics and Its Applications, 415, Kluwer Academic Publ., Dordrecht, 1997, xxi+416 pp. | Zbl | Zbl
[14] Laurent P.-J., Approximation et Optimisation, Enseignement des Sciences, 13, Hermann, Paris, 1972, xii+531 pp. (In French) | Zbl
[15] Arcangéli R., López de Silanes M. C., Torrens J. J., Multidimensional Minimizing Splines. Theory and Applications, Kluwer Academic Publ., Boston, MA, 2004, xvi+261 pp. | Zbl
[16] Schumaker L. L., Spline Functions: Basic Theory, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 2007, xv+582 pp. | Zbl
[17] Holladay J. C., “A smoothest curve approximation”, Math. Tables Aids Comput., 11 (1957), 233–243 | DOI | Zbl
[18] Schoenberg I. J., “On equidistant cubic spline interpolation”, Bull. Am. Math. Soc., 77 (1971), 1039–1043 | DOI
[19] de Boor C., “Best approximation properties of spline functions of odd degree”, J. Math. Mech., 12 (1963), 747–749 | Zbl
[20] Cabada A., Hayotov A. R., Shadimetov Kh. M., “Construction of $D^m$-splines in $L_2^{(m)} (0,1)$ space by Sobolev method”, Appl. Math. Comput., 244 (2014), 524–551 | DOI | Zbl
[21] Hayotov A. R., Milovanović G. V., Shadimetov Kh. M., “Interpolation splines minimizing a semi-norm”, Calcolo, 51:2 (2014), 245–260 | DOI | Zbl
[22] Shadimetov Kh. M., Hayotov A. R., Nuraliev F. A., “Optimal interpolation formulas with derivative in the space $L_2^{(m)} (0,1)$”, Filomat, 33:17 (2019), 5661–5675 | DOI | Zbl
[23] Shadimetov Kh. M., Boltaev A. K., “An exponential-trigonometric spline minimizing a seminorm in a Hilbert space”, Adv. Differ. Equ., 2020 (2020), 352 | DOI | Zbl
[24] Akhmedov D., Shadimetov Kh., “Optimal quadrature formulas with derivative for Hadamard type singular integrals”, AIP Conf. Proc., 2365 (2021), 020020 | DOI
[25] Akhmedov D., “Approximate solution of a class of singular integral equations of the first kind”, AIP Conf. Proc., 3004 (2024), 060033 | DOI
[26] Rasulov R., Mahkamova D., “The norm of the error functional for the Euler–Maclaurin type quadrature formulas in the space $W_2^{(2k, 2k-1)} (0,1)$”, AIP Conf. Proc., 3004 (2024), 060042 | DOI
[27] Shadimetov Kh., Boltaev A., “An exponential-trigonometric optimal interpolation formula”, Lobachevskii J. Math., 44:10 (2023), 4379–4392 | DOI | Zbl
[28] Sobolev S. L., “On interpolation of functions of $n$ variables”, Sov. Math., Dokl., 2:4 (1961), 343–346 | MR | Zbl
[29] Shadimetov Kh., Boltaev A., Parovik R., “Optimization of the approximate integration formula using the discrete analogue of a high-order differential operator”, Mathematics, 11:14 (2023), 3114 | DOI
[30] Ghalichi S. S. S., Amirfakhrian M., Allahviranloo T., “An algorithm for choosing a good shape parameter for radial basis functions method with a case study in image processing”, Results Appl. Math., 16 (2022), 100337 | DOI | Zbl