The Riemann matrix for some systems of the differential hyperbolic-type equations of the high order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 799-808.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions to some boundary value problems for systems of hyperbolic partial differential equations can be constructed explicitly in terms of the Riemann matrix. In this regard, the question of explicitly constructing the Riemann matrix for high-order hyperbolic systems of equations is relevant. We consider a system of third-order hyperbolic partial differential equations with three independent variables. For the specified system, the Riemann matrix is constructed as a solution to a special Goursat problem. Furthermore, the Riemann matrix satisfies a Volterra integral equation. The Riemann matrix is expressed explicitly in terms of a hypergeometric function of a matrix argument. Similarly, a system of fourth-order hyperbolic partial differential equations with four independent variables is considered. These results are generalized for a system of hyperbolic partial differential equations of order $n$ that does not contain derivatives of order less than $n$.
Keywords: system of $n$-th order hyperbolic PDEs, hypergeometrical function of matrix argument
Mots-clés : Riemann matrix, Goursat problem
@article{VSGTU_2024_28_4_a10,
     author = {J. O. Yakovleva},
     title = {The {Riemann} matrix  for some systems of the differential hyperbolic-type equations of the high order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {799--808},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a10/}
}
TY  - JOUR
AU  - J. O. Yakovleva
TI  - The Riemann matrix  for some systems of the differential hyperbolic-type equations of the high order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 799
EP  - 808
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a10/
LA  - ru
ID  - VSGTU_2024_28_4_a10
ER  - 
%0 Journal Article
%A J. O. Yakovleva
%T The Riemann matrix  for some systems of the differential hyperbolic-type equations of the high order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 799-808
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a10/
%G ru
%F VSGTU_2024_28_4_a10
J. O. Yakovleva. The Riemann matrix  for some systems of the differential hyperbolic-type equations of the high order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 4, pp. 799-808. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_4_a10/

[1] Bitsadze A. V., Some Classes of Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 4, Gordon Breach Science Publ., New York, 1988, xi+504 pp. | Zbl | Zbl

[2] Soldatov A. P., Shkhanukov M. Kh., “Boundary value problems with Samarskiy general nonlocal condition for higher-order pseudoparabolic equations”, Soviet Math. Dokl., 36:3 (1988), 507–511 | MR | Zbl

[3] Zikirov O. S., “Local and nonlocal boundary-value problems for third-order hyperbolic equations”, J. Math. Sci., 175:1 (2011), 104–123 | DOI | Zbl

[4] Zeitsch P. J., “On the Riemann function”, Mathematics, 6:12 (2018), 316 | DOI

[5] Zhegalov V. I., Mironov A. N., “Cauchy problems for two partial differential equations”, Russian Math. (Iz. VUZ), 46:5 (2002), 21–28 | MR | Zbl

[6] Mironov A. N., Mironova L. B., Yakovleva J. O., “The Riemann method for equations with a dominant partial derivative (A Review)”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 207–240 (In Russian) | DOI | Zbl

[7] Zhegalov V. I., Mironov A. N., Differentsial'nye uravneniia so starshimi chastnymi proizvodnymi [Differential Equations with Higher Partial Derivatives], Kazan Math. Society, Kazan, 2001, 226 pp. (In Russian)

[8] Scott E. J., “The Riemann function for a class of equations of the form $\dfrac{\partial^2 v}{\partial x \partial y} +\nu(x)\mu(y)v=0$”, Ganita, 26:1 (1975), 19–28 | Zbl

[9] Andreev A. A., Yakovleva J. O., “The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 186–194 (In Russian) | DOI | Zbl

[10] Yakovleva J. O., Tarasenko A. V., “The solution of Cauchy problem for thehyperbolic differential equations of the fourth order by the Riman method”, Vestn. Samar. Univ. Estestvennon. Ser. [Vestnik of Samara University. Natural Science Series], 25:3, 33–38 (In Russian) | DOI

[11] Gantmakher F. R., Teoriia matrits [Theory of Matrices], Nauka, Moscow, 1988, 549 pp. (In Russian) | Zbl

[12] Volterra V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publ., New York, 1959, 226 pp. | Zbl

[13] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. I, ed. H. Bateman, McGraw-Hill Book Co, New York – Toronto – London, 1953, 302 pp. | MR | MR | Zbl