Some integral transformations of a Fox function with four parameters
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 367-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study examines the Fox function with four parameters, which arises in the theory of degenerate differential equations with partial derivatives of fractional order. In terms of this function, explicit solutions to the first and second boundary value problems in a half-space were previously derived for the equation with the Bessel operator acting on the spatial variable and a fractional derivative with respect to time. For the function under consideration, when two of the four parameters are dependent, a Laplace transform formula has been obtained, expressed in terms of the special MacDonald function. Additionally, integral transformation formulas have been derived, expressed through the generalized Wright function and the more general $H$-function of Fox. An auxiliary tool for proving the obtained formulas is the Mellin–Barnes integral, which is used to express the special function under consideration. The convergence of the improper integrals follows from the asymptotic estimates also provided in the work. It is shown that for specific values from the Laplace transform formula, known transformation formulas for the exponential function and the Wright function with power multipliers follow.
Keywords: Fox function, Macdonald function, Wright function, Bessel operator, fractional derivative, integral transformations
Mots-clés : Laplace transform
@article{VSGTU_2024_28_2_a8,
     author = {F. G. Khushtova},
     title = {Some integral transformations of a {Fox} function with four parameters},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {367--377},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a8/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - Some integral transformations of a Fox function with four parameters
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2024
SP  - 367
EP  - 377
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a8/
LA  - ru
ID  - VSGTU_2024_28_2_a8
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T Some integral transformations of a Fox function with four parameters
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2024
%P 367-377
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a8/
%G ru
%F VSGTU_2024_28_2_a8
F. G. Khushtova. Some integral transformations of a Fox function with four parameters. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 28 (2024) no. 2, pp. 367-377. http://geodesic.mathdoc.fr/item/VSGTU_2024_28_2_a8/

[1] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 3, More Special Functions, Gordon and Breach Science Publ., New York, 1990, 800 pp. | Zbl | Zbl

[2] Kilbas A. A., Saigo M., H-Transforms. Theory and Applications, Analytical Methods and Special Functions, 9, Chapman Hall/CRC, Boca Raton, FL, 2004, xii+389 pp. | Zbl

[3] Mathai A. M., Saxena R. K., Haubold H. J., The H-Function. Theory and Applications, Springer, Dordrecht, 2010, xiv+268 pp. | DOI | Zbl

[4] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional Calculus and Its Applications], Fizmatlit, Moscow, 2003, 271 pp. (In Russian) | Zbl

[5] Khushtova F. G., “First boundary-value problem in the half-strip for a parabolic-type equation with Bessel 0perator and Riemann–Liouville derivative”, Math. Notes, 99:6 (2016), 916–923 | DOI | DOI | MR | Zbl

[6] Kuznetsov D. S., Spetsial'nye funktsii [Special Functions], Vyssh. Shk., Moscow, 1962, 248 pp. (In Russian)

[7] Erdélyi A, Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. I, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953, xxvi+302 pp. | Zbl | Zbl

[8] Khushtova F. G., “The second boundary-value problem in a half-strip for a parabolic-type equation with Bessel operator and Riemann–Liouville partial derivative”, Math. Notes, 103:3 (2018), 474–482 | DOI | DOI | MR | Zbl

[9] Khushtova F. G., “Differentiation formulas and the autotransformation formula for one particular case of the Fox function”, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 20:4 (2020), 15–18 (In Russian) | DOI

[10] Khushtova F. G., “On some properties of one special function”, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 22:2 (2022), 34–40 (In Russian) | DOI

[11] Khushtova F. G., “On the Mellin–Barnes integral representation of one special function”, Izv. Kabard.-Balkarsk. Nauchn. Tsentra RAN, 2022, no. 6, 19–27 (In Russian) | DOI

[12] Khushtova F. G., “On some formulas for fractional integration of one Fox function with four parameters”, Dokl. Adygsk. (Cherkessk.) Mezhdun. Akad. Nauk, 22:4 (2022), 29–38 (In Russian) | DOI

[13] Khushtova F. G., “To the properties of one Fox function”, Vestn. KRAUNC. Fiz.-Mat. Nauki, 42:1 (2023), 140–149 (In Russian) | DOI | Zbl

[14] Voroshilov A. A., “Erdélyi–Kober type fractional differentiation of the Fox $H$-function”, Vestn. Grodnensk. Gos. Univ. im. Yanki Kupaly. Ser. 2. Mat. Fiz. Inform., Vychisl. Tekhn. Upravl., 2:129 (2012), 11–20 (In Russian)

[15] Avsievich A. V., Avsievich V. V., “Laplace transform in fractional order automatic control systems”, Nauka Obrazov. Transp., 2013, no. 1, 195–199 (In Russian)

[16] Avsievich A. V., “The Laplace transform of special Wright functions”, Vestn. Transp. Povolzh., 2013, no. 6, 50–52 (In Russian)

[17] Zaikina S. M., “Generalized integral Laplace transform and its application to solving some integral equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1, 19–24 (In Russian) | DOI | Zbl

[18] Qureshi M. I., Kabra D. K., Baboo M. S., “Laplace transforms of multiple hypergeometric functions using Mellin–Barnes type contour integration”, Asia Pac. J. Math., 2:2 (2015), 94–107 | Zbl

[19] Skoromnik O. V., “Integral transforms with the confluent hyperdeometric function of Kummer and the cut Bessel function in the kernels and integral equations of the first kind in the space of summable functions”, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2016, no. 12, 104–110 (In Russian)

[20] Karp D., Prilepkina E. G., “Applications of the Stieltjes and Laplace transform representations of the hypergeometric functions”, Integral Transforms Spec. Funct., 28:10 (2017), 710–731 | DOI | Zbl

[21] Skoromnik O. V., “Two-dimentional integral transform with the $H$-function in the kernel in the space of summable functions”, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2018, no. 4, 187–193 (In Russian)

[22] Papkovich M. V., Skoromnik O. V., “Two-dimentional integral transform with the meijer $G$-function in the kernel in the space of summable functions”, Vestn. Polotsk. Gosud. Univ. Ser. C. Fundament. Nauki, 2019, no. 4, 131–136 (In Russian)

[23] Mohammed A. O., Rakha M. A., Awad M. M., Rathie A. K., “On several new Laplace transforms of generalized hypergeometric functions ${}_2F_2(x)$”, Bol. Soc. Parana. Mat. (3), 39:4 (2021), 97–109 | DOI | Zbl

[24] Katrakhov V. V., Sitnik S. M., “The transmutation method and boundary-value problems for singular elliptic equations”, Contemporary Mathematics. Fundamental Directions, 64:2 (2018), 211–426 (In Russian) | DOI

[25] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniia dlia differentsial'nykh uravnenii s operatorami Besselia [Method of Transformation Operators for Differential Equations with Bessel Operators], Fizmatlit, Moscow, 2019, 224 pp. (In Russian)

[26] Transmutation Operators and Applications, Trends in Mathematics, eds. V. V. Kravchenko, S. M. Sitnik, Birkhäuser, Cham, 2020, xvii+686 pp. | DOI | Zbl

[27] Lebedev N. N., Special Functions and Their Applications, Prentice Hall, Englewood Cliffs, N.J., 1965, xii+308 pp. | Zbl

[28] Marichev O. I., Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Limited, Chichester, 1983, 336 pp. | Zbl

[29] Wright E. M., “On the coefficients of power series having exponential singularities”, J. Lond. Math. Soc., s1-8:1 (1933), 71–79 | DOI

[30] Wright E. M., “The generalized Bessel function of order greater than one”, Q. J. Math., os-11:1 (1940), 36–48 | DOI | Zbl

[31] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 1, Elementary Functions, Gordon and Breach Science Publishers, New York-London, 1986, 798 pp. | Zbl | Zbl

[32] Pskhu A. V., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Fractional Partial Differential Equations], Nauka, Moscow, 2005, 199 pp. (In Russian)