One way of summing multidimensional series
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 745-752.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that in analysis courses, multiple series are considered only at a conceptual level, and their simplest properties are provided. Two widely used methods for summing multiple Fourier series are the spherical and rectangular methods. The present study is devoted to a new method of proving the convergence of multidimensional series by reducing them to a one-dimensional series, allowing applicating known statements for one-dimensional series to multidimensional ones. Examples of justifying the convergence of numerical and functional series are provided as an illustration of this summing method.
Keywords: multidimensional number series, multidimensional functional series, reduction to a one-dimensional series, examples
Mots-clés : convergence, uniform convergence
@article{VSGTU_2023_27_4_a8,
     author = {K. B. Sabitov},
     title = {One way of summing multidimensional series},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {745--752},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a8/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - One way of summing multidimensional series
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 745
EP  - 752
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a8/
LA  - ru
ID  - VSGTU_2023_27_4_a8
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T One way of summing multidimensional series
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 745-752
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a8/
%G ru
%F VSGTU_2023_27_4_a8
K. B. Sabitov. One way of summing multidimensional series. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 745-752. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a8/

[1] Fichtenholz G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Course of Differential and Integral Calculus], v. 1, Fizmatlit, Laboratoriia Znanii, Moscow, 2003, 863 pp. (In Russian)

[2] Il'in V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz [Mathematical Analysis], v. 2, Moscow State Univ., Moscow, 1987, 358 pp. | Zbl

[3] Kudryavtsev L. D., Kurs matematicheskogo analiza [A Course of Mathematical Analysis], v. 1, Vyssh. shk., Moscow, 1981, 584 pp. (In Russian) | Zbl

[4] Bugrov Ya. S., Nikol'skii S. M., Vysshaia matematika. Differentsial'noe i integral'noe ischislenie [Higher Mathematics. Differential and Integral Calculus], Drofa, Moscow, 2005, 509 pp. (In Russian)

[5] Chelidze V. G., Nekotorye metody summirovaniia dvoinykh riadov i dvoinykh integralov [Some Methods of Summation of Double Series and Double Integrals], Tbilisi Univ., Tbilisi, 1977, 399 pp. (In Russian)

[6] Yanushauskas A. I., Dvoinye riady [Double Series], Nauka, Novosibirsk, 1980, 224 pp. (In Russian) | Zbl

[7] Sabitov K. B., “Initial-boundary problem for a three-dimensional equation of mixed parabolic-hyperbolic type”, Modern Problems of Mathematics and Mechanics, MAKS Press, Moscow, 2019, 369–372 (In Russian)

[8] Sabitov K. B., “Dirichlet problem for a two-dimensional wave equation”, Modern Problems of Computational Mathematics and Mathematical Physics, Moscow State Univ., Moscow, 2019, 58–59 (In Russian)

[9] Sabitov K. B., Sidorov S. N., “Initial-boundary value problem for a three-dimensional equation of the parabolic-hyperbolic type”, Differ. Equat., 57:8 (2021), 1042–1052 | DOI | DOI

[10] Sabitov K. B., Sidorov S. N., “Initial-boundary problem for a three-dimensional inhomogeneous equation of parabolic-hyperbolic type”, Lobachevskii J. Math., 41:11 (2020), 2257–2268 | DOI

[11] Sabitov K. B., “Initial-boundary value problems for equation of oscillations of a rectangular plate”, Russian Math. (Iz. VUZ), 65:10 (2021), 52–62 | DOI | DOI

[12] Il'in V. A., Pozniak E. G., Osnovy matematicheskogo analiza [Fundamentals of Mathematical Analysis] Part II, Fizmatlit, Moscow, 2001, 453 pp. (In Russian)