Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_4_a5, author = {Kh. Kh. Khudoynazarov}, title = {Modeling of nonlinear torsional vibrations of a~truncated conical rod}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {704--722}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a5/} }
TY - JOUR AU - Kh. Kh. Khudoynazarov TI - Modeling of nonlinear torsional vibrations of a~truncated conical rod JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 704 EP - 722 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a5/ LA - ru ID - VSGTU_2023_27_4_a5 ER -
%0 Journal Article %A Kh. Kh. Khudoynazarov %T Modeling of nonlinear torsional vibrations of a~truncated conical rod %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 704-722 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a5/ %G ru %F VSGTU_2023_27_4_a5
Kh. Kh. Khudoynazarov. Modeling of nonlinear torsional vibrations of a~truncated conical rod. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 4, pp. 704-722. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_4_a5/
[1] Kushnarenko V. M. Beridze S. P., “Free longitudinal vibrations of a conical rod”, Vestn. Orenburg. Gos. Univ., 2000, no. 3, 83–86 (In Russian)
[2] Bakhtiari M., Lakis A. A., Kerboua Y., Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories, Rapport technique no. EPMRT-2018-01, 2018 (In French) https://publications.polymtl.ca/3011/
[3] Beridze S. P., “Free torsional vibrations of a conical rod”, Vestn. Orenburg. Gos. Univ., 1999, no. 3, 104–107 (In Russian)
[4] Sofiyev A. H., “The non-linear vibration of FGM truncated conical shells”, Compos. Struct., 94:7 (2012), 2237–2245 | DOI
[5] Khudoynazarov Kh. Kh., Khalmuradov R. I., Yalgashev B. F., “Longitudinal-radial vibrations of a elastic cylindrical shell filled with a viscous compressible liquid”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 69, 139–154 (In Russian) | DOI
[6] Khudoynazarov Kh. Kh., “Transversal vibrations of thick and thin cylindrical shells, interacting with deformable medium”, Shell Structures Theory and Applications, Taylor Francis Group, London, 343–347
[7] Alijani F., Amabili M., “Non-linear vibrations of shells: A literature review from 2003 to 2013”, Int. J. Non-Linear Mech., 58 (2014), 233–257 | DOI
[8] Pellicano F., “Vibrations of circular cylindrical shells: Theory and experiments”, J. Sound Vibration, 303:1–2 (2007), 154–170 | DOI
[9] Breslavskii I. D., “Stress distribution over a plate during nonlinear vibrations”, Visn. Kharkiv. Natsion. Univ. im. V. N. Karazina. Ser. Mat. Mod., Inform. Tekhn., Avtomat. Sist. Upravl., 2010, no. 926, 75–84 (In Russian)
[10] Chen C., “Nonlinear dynamic of a rotating truncated conical shell”, L. Dai, R. Jazar (Eds.) Nonlinear Approaches in Engineering Applications, Springer, New York, NY, 2012, 349–391 | DOI
[11] Akhmedov A. B., Sheshenin S. V., “Nonlinear equations of motion for orthotropic plates”, Moscow University Mechanics Bulletin, 67:3 (2012), 66–68 | DOI
[12] Bakushev S. V., “Resolving equations of planar deformation in cylindrical coordinates for physically nonlinear continuum”, Structural Mechanics of Engineering Constructions and Buildings, 14:1 (2018), 38—45 (In Russian) | DOI
[13] Khudoynazarov Kh., Abdurazakov J., Kholikov D., “Nonlinear torsional vibrations of a circular cylindrical elastic shell”, AIP Conf. Proc., 2637 (2022), 020003 | DOI
[14] Khudoynazarov Kh., Kholikov D., Abdurazakov J., “Torsional vibrations of a conical elastic shell”, AIP Conf. Proc., 2637 (2022), 030024 | DOI
[15] Khudoynazarov Kh., Khudoyberdiyev Z. B., “Unsteady vibrations of a three-layer plate with an asymmetric structure”, IOP Conf. Ser.: Earth Environ. Sci., 614 (2020), 012061 | DOI
[16] Khudoynazarov Kh., Yaxshiboyev Sh. R., “The mathematical model of transverse vibrations of the three-layer plate”, IOP Conf. Ser.: Earth Environ. Sci., 614 (2020), 012062 | DOI
[17] Khudoynazarov K., Yalgashev B., “Longitudinal vibrations of a cylindrical shell filled with a viscous compressible liquid”, E3S Web Conf., 264 (2021), 02017 | DOI
[18] Filippov I. G., Kudajnazarov K., “Boundary value problems of longitudinal oscillations of the circular cylindrical shells”, Industrial Construction, 28:12 (1998), 34–40
[19] von Kauderer H., Nichtlineare Mechanik, Springer-Verlag, Berlin, 684 pp. (In German) | Zbl
[20] Filippov I. G., Filippov S. I., Kolebatel'nye i volnovye protsessy v sploshnykh szhimaemykh sredakh [Oscillatory and Wave Processes in Continuous Compressible Media], Moscow, 2007, 429 pp. (In Russian)
[21] Khudoynazarov Kh. Kh., Nestatsionarnoe vzaimodeistvie tsilindricheskikh obolochek i sterzhnei s deformiruemoi sredoi [Nonstationary Interaction of Cylindrical Shells and Rods with a Deformable Medium], Tashkent, 2003, 326 pp. (In Russian)
[22] Tsurpal I. A., Raschet elementov konstruktsii iz nelineino-uprugikh materialov [Calculation of Structural Elements Made from Nonlinearly Elastic Materials], Tekhnika, Kiev, 1976, 176 pp. (In Russian)
[23] Kudin A. V., Tamurov Yu. N., “Application of the small parameter method in modeling the bending of symmetrical three-layer plates with nonlinear elastic filler”, Visn. Skhidnoukr. Natsion. Univ. im. V. Dalya, 2011, no. 11, 32–40 (In Russian)