Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a9, author = {E. V. Solomin and A. S. Martyanov and A. A. Kovalyov and G. N. Ryavkin and K. V. Osintsev and Ya. S. Bolkov and D. S. Antipin}, title = {Wind direction stereo sensor for the wind turbine active yaw system}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {573--592}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a9/} }
TY - JOUR AU - E. V. Solomin AU - A. S. Martyanov AU - A. A. Kovalyov AU - G. N. Ryavkin AU - K. V. Osintsev AU - Ya. S. Bolkov AU - D. S. Antipin TI - Wind direction stereo sensor for the wind turbine active yaw system JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 573 EP - 592 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a9/ LA - ru ID - VSGTU_2023_27_3_a9 ER -
%0 Journal Article %A E. V. Solomin %A A. S. Martyanov %A A. A. Kovalyov %A G. N. Ryavkin %A K. V. Osintsev %A Ya. S. Bolkov %A D. S. Antipin %T Wind direction stereo sensor for the wind turbine active yaw system %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 573-592 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a9/ %G ru %F VSGTU_2023_27_3_a9
E. V. Solomin; A. S. Martyanov; A. A. Kovalyov; G. N. Ryavkin; K. V. Osintsev; Ya. S. Bolkov; D. S. Antipin. Wind direction stereo sensor for the wind turbine active yaw system. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 573-592. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a9/
[1] Scholbrock A. K., Fleming P. A., Fingersh L. J., et al., Field testing LIDAR based feed-forward controls on the NREL controls advanced research rurbine, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Grapevine, Texas; January 7–10, 2013). Conference Paper NREL/CP-5000-57339, 2013, 8 pp. | DOI
[2] Steven L., Eamon McK., “LIDAR and SODAR measurements of wind speed and direction in upland terrain for wind energy purposes”, Remote Sens., 3:9 (2011), 1871–1901 | DOI
[3] Dongran S., Yang J., Fan X., et al., “Maximum power extraction for wind turbines through a novel yaw control solution using predicted”, Energy Con. Man., 157:4 (2018), 587–599 | DOI
[4] Qu C., Lin Z., Chen P., et al., “An improved data-driven methodology and field-test verification of yaw misalignment calibration on wind turbines”, Energy Con. Man., 266:4 (2022), 115786 | DOI
[5] Liu Z., Gao W., Wan Y.-H., Muljadi E., Wind power plant prediction by using neural networks, IEEE Energy Conversion Conference and Exposition (Raleigh, North Carolina; September 15–20, 2012). Conference Paper NREL/CP-5500-55871, 2012, 7 pp. | DOI
[6] Karakasis N., Mesemanolis A., Nalmpantis T., Mademlis C., “Active yaw control in a horizontal axis wind system without requiring wind direction measurement”, IET Renewable Power Generation, 10:9 (2016), 1441–1449 | DOI
[7] Mamidipudi P., Dakin E., Hopkins A., et al., Yaw Control: The Forgotten Controls Problem, Catch the Wind, Inc., Virginia, 2011
[8] Solomin E., Terekhin A., Martyanov A., et al., “Horizontal axis wind turbine yaw differential error reduction approach”, Energy Con. Man., 254:9 (2022), 115255 | DOI
[9] Pei Y., Qian Z., Jing B., et al., “Data-driven method for wind turbine yaw angle sensor zero-point shifting fault detection”, Energies, 11:3 (2018), 553 | DOI
[10] Kim M.-G., Dalhof P., “Yaw systems for wind turbines – Overview of concepts, current challenges and design methods”, J. Phys.: Conf. Ser., 524:1 (2014), 012086 | DOI
[11] Total Energy: World Energy Climate Statistics – Yearbook 2023 [Electronic resource] URL: (Accessed: May 29, 2023) https://yearbook.enerdata.net/total-energy/world-energy-production.html
[12] Astolfi D., Castellani F., Becchetti M., et al., “Wind turbine systematic yaw error: Operation data analysis techniques for detecting it and assessing its performance impact”, Energies, 13:9, 2351 | DOI
[13] Churchfield M., Lee S., Moriarty P., et al., A large-eddy simulation of wind-plant aerodynamics, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (Nashville, Tennessee; January 9–12, 2012). Conference Paper NREL/CP-5000-53554, 2012, 19 pp. | DOI
[14] Siemens SWT-3.6-120 Offshore — 3,60 MW — Wind turbine [Electronic resource] URL: (Accessed: May 29, 2023) https://en.wind-turbine-models.com/turbines/669-siemens-swt-3.6-120-offshore
[15] Solomin E. V., Terekhin A. A., Martyanov A. S., et. al., “Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022), 339–354 (In Russian) | DOI
[16] Mueller K., Atman J., Kronenwett N., et al., “A multi-sensor navigation system for outdoor and indoor environments”, Proceedings of the 2020 International Technical Meeting of The Institute of Navigation, San Diego, California, 2020, 612–625 | DOI