Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a7, author = {N. V. Burmasheva and E. A. Larina and E. Yu. Prosviryakov}, title = {Inhomogeneous {Couette} flows for a two-layer fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {530--543}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a7/} }
TY - JOUR AU - N. V. Burmasheva AU - E. A. Larina AU - E. Yu. Prosviryakov TI - Inhomogeneous Couette flows for a two-layer fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 530 EP - 543 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a7/ LA - en ID - VSGTU_2023_27_3_a7 ER -
%0 Journal Article %A N. V. Burmasheva %A E. A. Larina %A E. Yu. Prosviryakov %T Inhomogeneous Couette flows for a two-layer fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 530-543 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a7/ %G en %F VSGTU_2023_27_3_a7
N. V. Burmasheva; E. A. Larina; E. Yu. Prosviryakov. Inhomogeneous Couette flows for a two-layer fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 530-543. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a7/
[1] Couette M., “Études sur le frottement des liquids”, Ann. de Chim. et Phys. (6), 21 (1890), 433–510 (In French)
[2] Drazin P., Riley N., The Navier–Stokes equations: A classification of flows and exact solutions, London Mathematical Society Lecture Note Serie, 334, Cambridge Univ. Press, Cambridge, 2006, x+196 pp. | DOI
[3] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI
[4] Taylor G. I., “Stability of a viscous liquid contained between two rotating cylinders”, J. Phil. Trans. Royal Society A, 102:718 (1923), 541–542 | DOI
[5] Shlikhting G., Teoriia pogranichnogo sloia [Boundary-Layer Theory], Nauka, Moscow, 1974, 712 pp. (In Russian)
[6] Ilin K. I., Morgulis A. B., “Critical curves for the Couette–Taylor throughflow”, Izv. Vuzov. Severo-Kavkazskii Reg. Natural Sci., 1 (2019), 10–16 (In Russian)
[7] Devisilov V. A., Sharay E. Yu., “Hydrodynamic filtration”, Safety in Technosphere, 4:3 (2015), 68–80 (In Russian) | DOI
[8] Lebiga V. A., Zinoviev V. N., Pak A. Yu., Zharov I. R., “The circular gap Couette flow modeling”, Vestn. Novosib. Gos. Univ. Ser. Fizika, 11:4 (2016), 52–60 (In Russian)
[9] Astaf'ev N. M., “Structures formed in a rotating spherical layer under the influence of conditions simulating global heat fluxes in the atmosphere”, Sovr. Probl. DZZ Kosm., 3:1 (2006), 245–256 (In Russian)
[10] Belyaev Yu. N., Monakhov A. A., Yavorskaya I. M., “Stability of spherical Couette flow in thick layers when the inner sphere revolves”, Fluid. Dyn., 13:2 (1978), 162–168 | DOI
[11] Puhnachev V. V., Puhnacheva T. P., “The Couette problem for a Kelvin–Voigt medium”, J. Math. Sci., 186:3 (2012), 495–510 | DOI
[12] Skul'skiy O. I., Aristov S. N., Mekhanika anomal'no viazkikh zhidkostei [Mechanics of Abnormally Viscous Fluids], R Dynamics, Moscow, Izhevsk, 2003, 156 pp. (In Russian)
[13] Prosviryakov E. Yu., “Exact solutions for three-dimensional potential and vorticity Couette flows of an incompressible viscous fluid”, Vestnik natsional'nogo issledovatel'skogo yadernogo universiteta “MIFI”, 4:6 (2015), 501–506 | DOI
[14] Aristov S. N., Prosviryakov E. Yu., “On laminar flows of planar free convection”, Nelin. Dinam., 9:4 (2013), 651–657 (In Russian)
[15] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Nelin. Dinam., 10:2 (2014), 177–182 (In Russian)
[16] Zubarev N. M., Prosviryakov E. Yu., “Exact solutions for layered three-dimensional nonstationary isobaric flows of a viscous incompressible fluid”, J. Appl. Mech. Tech. Phys., 60:6 (2019), 1031–1037 | DOI
[17] Berker R., Sur quelques cas d'intégration des équations du mouvement d'un fluide visqueux incompressible, Imprimerie A. Taffin-Lefort, Paris-Lille, 1936, 161 pp. (In French) | Zbl
[18] Shmyglevskii Yu. D., “On isobaric planar flows of a viscous incompressible liquid”, USSR Comput. Math. Math. Phys., 25:6 (1985), 191–193 | DOI | Zbl
[19] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 | DOI
[20] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI
[21] Aristov S. N., Eddy Currents in Thin Liquid Layers, Dr. Sci. [Phys.-Math.] Dissertation, Vladivostok, 1990, 303 pp. (In Russian)
[22] Burmasheva N. V., Prosviryakov E. Yu., “Exact solutions to the Navier–Stokes equations describing stratified fluid flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 491–507 | DOI | Zbl
[23] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 736–751 (In Russian) | DOI | Zbl
[24] Burmasheva N. V., Prosviryakov E. Yu., “Studying the stratification of hydrodynamic fields for laminar flows of vertically swirling fluids”, Diagnostics, Resource and Mechanics of Materials and Structures, 2020, no. 4, 62–78 | DOI
[25] Landau L. D., Lifshitz E. M., Fluid Mechanics, Course of Theoretical Physics, 6, Pergamon Press, Oxford, 1963, xii+536 pp. | Zbl
[26] Kochin N. K., Kibel I. A., Roze N. V., Theoretical Hydromechanics, John Wiley and Sons, New York, 1964, v+577 pp. | Zbl