The study of the stress-strain state of an elastically supported compressed strip
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 593-601.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analysis has been conducted on the continuous dependence of the function describing the behavior of the real structure on the characteristics of initial imperfections. A condition has been obtained, imposed on the parameter of external influence and the stiffness coefficient of the foundation, when that is violated, the shape of the cross-section of the strip will no longer be close to a rectangle, i.e. the strip loses shape stability. During the study, the parameters of external influences remained independent. The first version of the article was published in Aktual'nye problemy prikladnoi matematiki, informatiki i mekhaniki [Current Problems of Applied Mathematics, Computational Science and Mechanics]. Voronezh, 2022. Pp. 1265–1269. (In Russian)
Keywords: elastic strip, elastic support, continuous dependence, stability.
@article{VSGTU_2023_27_3_a10,
     author = {N. V. Minaeva and S. Yu. Gridnev and Yu. I. Skalko and V. S. Safronov and E. E. Aleksandrova},
     title = {The study of the stress-strain state of an elastically supported compressed strip},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {593--601},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/}
}
TY  - JOUR
AU  - N. V. Minaeva
AU  - S. Yu. Gridnev
AU  - Yu. I. Skalko
AU  - V. S. Safronov
AU  - E. E. Aleksandrova
TI  - The study of the stress-strain state of an elastically supported compressed strip
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 593
EP  - 601
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/
LA  - en
ID  - VSGTU_2023_27_3_a10
ER  - 
%0 Journal Article
%A N. V. Minaeva
%A S. Yu. Gridnev
%A Yu. I. Skalko
%A V. S. Safronov
%A E. E. Aleksandrova
%T The study of the stress-strain state of an elastically supported compressed strip
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 593-601
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/
%G en
%F VSGTU_2023_27_3_a10
N. V. Minaeva; S. Yu. Gridnev; Yu. I. Skalko; V. S. Safronov; E. E. Aleksandrova. The study of the stress-strain state of an elastically supported compressed strip. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 593-601. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/

[1] Bolotin V. V., Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, New York, 1963, 320 pp. | Zbl

[2] Ershov L. V., Ivlev D. D., “The stability of a strip under compression”, Sov. Phys., Dokl., 6:5 (1961), 512–514 | Zbl

[3] Papkovich P. F., “On one form of solution of the plane problem of the theory of elasticity for the rectangular strip”, Dokl. Akad. Nauk SSSR, 27:4 (1944), 359–374 (In Russian)

[4] Sporykhin A. N., Shashkin A. I., Ustoichivost' ravnovesiia prostranstvennykh tel i zadachi mekhaniki gornykh porod [Stability of Spatial Equilibrium of Bodies and Problems of the Mechanics of Rock], Fizmatlit, Moscow, 2004, 232 pp. (In Russian)

[5] Vol'mir A. S., Ustoichivost' uprugikh sistem [Stability of Elastic Systems], Fizmatgiz, Moscow, 1963, 880 pp.

[6] Ishlinsky A. Yu., “On the problem of elastic bodies equilibrium stability in mathematical theory of elasticity”, Ukr. Mat. Zh., 6:2 (1954), 140–146 (In Russian)

[7] Zachepa V. R., Sapronov Yu. I., Lokal'nyi analiz fredgol'movykh uravnenii [Local Analysis of Fredholm Equations], Voronezh State Univ., Voronezh, 2002, 185 pp. (In Russian)

[8] Minaeva N. V., Adekvatnost' matematicheskikh modelei deformiruemykh tel [The Adequacy of Mathematical Models of Deformable Bodies], Nauchn. Kniga, Moscow, 2006, 236 pp. (In Russian)

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Fizmatlit, Moscow, 1976, 543 pp. (In Russian)

[10] Minaeva N. V., “Stress strain state of the elastic strip with nearly rectangular cross section”, J. Phys.: Conf. Ser., 973 (2018), 012012 | DOI

[11] Minaeva N. V., “Linearization of boundary conditions given in integral form on the boundary of a body in a deformed state”, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2010, no. 2(8), 344–348 (In Russian)