Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_3_a10, author = {N. V. Minaeva and S. Yu. Gridnev and Yu. I. Skalko and V. S. Safronov and E. E. Aleksandrova}, title = {The study of the stress-strain state of an elastically supported compressed strip}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {593--601}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/} }
TY - JOUR AU - N. V. Minaeva AU - S. Yu. Gridnev AU - Yu. I. Skalko AU - V. S. Safronov AU - E. E. Aleksandrova TI - The study of the stress-strain state of an elastically supported compressed strip JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 593 EP - 601 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/ LA - en ID - VSGTU_2023_27_3_a10 ER -
%0 Journal Article %A N. V. Minaeva %A S. Yu. Gridnev %A Yu. I. Skalko %A V. S. Safronov %A E. E. Aleksandrova %T The study of the stress-strain state of an elastically supported compressed strip %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 593-601 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/ %G en %F VSGTU_2023_27_3_a10
N. V. Minaeva; S. Yu. Gridnev; Yu. I. Skalko; V. S. Safronov; E. E. Aleksandrova. The study of the stress-strain state of an elastically supported compressed strip. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 3, pp. 593-601. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_3_a10/
[1] Bolotin V. V., Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, New York, 1963, 320 pp. | Zbl
[2] Ershov L. V., Ivlev D. D., “The stability of a strip under compression”, Sov. Phys., Dokl., 6:5 (1961), 512–514 | Zbl
[3] Papkovich P. F., “On one form of solution of the plane problem of the theory of elasticity for the rectangular strip”, Dokl. Akad. Nauk SSSR, 27:4 (1944), 359–374 (In Russian)
[4] Sporykhin A. N., Shashkin A. I., Ustoichivost' ravnovesiia prostranstvennykh tel i zadachi mekhaniki gornykh porod [Stability of Spatial Equilibrium of Bodies and Problems of the Mechanics of Rock], Fizmatlit, Moscow, 2004, 232 pp. (In Russian)
[5] Vol'mir A. S., Ustoichivost' uprugikh sistem [Stability of Elastic Systems], Fizmatgiz, Moscow, 1963, 880 pp.
[6] Ishlinsky A. Yu., “On the problem of elastic bodies equilibrium stability in mathematical theory of elasticity”, Ukr. Mat. Zh., 6:2 (1954), 140–146 (In Russian)
[7] Zachepa V. R., Sapronov Yu. I., Lokal'nyi analiz fredgol'movykh uravnenii [Local Analysis of Fredholm Equations], Voronezh State Univ., Voronezh, 2002, 185 pp. (In Russian)
[8] Minaeva N. V., Adekvatnost' matematicheskikh modelei deformiruemykh tel [The Adequacy of Mathematical Models of Deformable Bodies], Nauchn. Kniga, Moscow, 2006, 236 pp. (In Russian)
[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Fizmatlit, Moscow, 1976, 543 pp. (In Russian)
[10] Minaeva N. V., “Stress strain state of the elastic strip with nearly rectangular cross section”, J. Phys.: Conf. Ser., 973 (2018), 012012 | DOI
[11] Minaeva N. V., “Linearization of boundary conditions given in integral form on the boundary of a body in a deformed state”, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2010, no. 2(8), 344–348 (In Russian)