A note on common fixed point theorems in a~bounded metric space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 241-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of $T_\beta$-contraction for a pair of commuting self-mappings and prove a common fixed point theorem for this type. Our results improve and extend many existing results in the literature. The paper also contains an application for non-linear integral equations.
Keywords: fixed point, $T_\beta$-contraction
Mots-clés : $T-\alpha$-admissible, $\tau$-distance.
@article{VSGTU_2023_27_2_a2,
     author = {Y. Touail and A. Jaid and D. El Moutawakil},
     title = {A note on common fixed point theorems in a~bounded metric space},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/}
}
TY  - JOUR
AU  - Y. Touail
AU  - A. Jaid
AU  - D. El Moutawakil
TI  - A note on common fixed point theorems in a~bounded metric space
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 241
EP  - 249
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/
LA  - en
ID  - VSGTU_2023_27_2_a2
ER  - 
%0 Journal Article
%A Y. Touail
%A A. Jaid
%A D. El Moutawakil
%T A note on common fixed point theorems in a~bounded metric space
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 241-249
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/
%G en
%F VSGTU_2023_27_2_a2
Y. Touail; A. Jaid; D. El Moutawakil. A note on common fixed point theorems in a~bounded metric space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 241-249. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/

[1] Jungck G., Rhoades B. E., “Fixed points for set valued functions without continuity”, Indian J. Pure Appl. Math., 29:3 (1998), 227–238 | Zbl

[2] Samet B., Vetro C., Vetro P., “Fixed point theorems for $\alpha$-$\psi$-contractive type mappings”, Nonl. Anal., Th. Meth. Appl., 75:4 (2012), 2154–2165 | DOI | Zbl

[3] Abdeljawad T., “Meir-Keeler $\alpha$-contractive fixed and common fixed point theorems”, Fixed Point Theory Appl., 2013:1 (2013), 19 | DOI | Zbl

[4] Touail Y., El Moutawakil D., “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, Int. J. Nonlinear Anal. Appl., 12:1 (2021), 903–911 | DOI

[5] Touail Y., El Moutawakil D., Bennani S., “Fixed point theorems for contractive selfmappings of a bounded metric space”, J. Funct. Spaces, 2019 (2019), 4175807 | DOI | Zbl

[6] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ric. Mat., 71:2 (2022), 315–323 | DOI

[7] Touail Y., El Moutawakil D., “$\perp_{\psi F}$-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo (2), 70:3 (2021), 1459–1472 | DOI | Zbl

[8] Touail Y., El Moutawakil D., “Fixed point theorems for new contractions with application in dynamic programming”, Vestn. St. Petersbg. Univ., Math., 54:2 (2021), 206–212 | DOI | Zbl

[9] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonlinear Anal. Appl., 12:2 (2021), 1801–1809 | DOI

[10] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-Eur. J. Math., 15:4 (2022), 2250080 | DOI | Zbl

[11] Touail Y., Jaid A., El Moutawakil D., “New contribution in fixed point theory via an auxiliary function with an application”, Ric. Mat., 72:1 (2023), 181–191 | DOI | Zbl

[12] Aamri M., El Moutawakil D., “$\tau$-distance in general topological spaces $(X, \tau)$ with application to fixed point theory”, Southwest J. Pure Appl. Math., 2003, no. 2, 1–6 https://eudml.org/doc/123956 | Zbl