Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_2_a2, author = {Y. Touail and A. Jaid and D. El Moutawakil}, title = {A note on common fixed point theorems in a~bounded metric space}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {241--249}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/} }
TY - JOUR AU - Y. Touail AU - A. Jaid AU - D. El Moutawakil TI - A note on common fixed point theorems in a~bounded metric space JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 241 EP - 249 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/ LA - en ID - VSGTU_2023_27_2_a2 ER -
%0 Journal Article %A Y. Touail %A A. Jaid %A D. El Moutawakil %T A note on common fixed point theorems in a~bounded metric space %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 241-249 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/ %G en %F VSGTU_2023_27_2_a2
Y. Touail; A. Jaid; D. El Moutawakil. A note on common fixed point theorems in a~bounded metric space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 241-249. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/
[1] Jungck G., Rhoades B. E., “Fixed points for set valued functions without continuity”, Indian J. Pure Appl. Math., 29:3 (1998), 227–238 | Zbl
[2] Samet B., Vetro C., Vetro P., “Fixed point theorems for $\alpha$-$\psi$-contractive type mappings”, Nonl. Anal., Th. Meth. Appl., 75:4 (2012), 2154–2165 | DOI | Zbl
[3] Abdeljawad T., “Meir-Keeler $\alpha$-contractive fixed and common fixed point theorems”, Fixed Point Theory Appl., 2013:1 (2013), 19 | DOI | Zbl
[4] Touail Y., El Moutawakil D., “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, Int. J. Nonlinear Anal. Appl., 12:1 (2021), 903–911 | DOI
[5] Touail Y., El Moutawakil D., Bennani S., “Fixed point theorems for contractive selfmappings of a bounded metric space”, J. Funct. Spaces, 2019 (2019), 4175807 | DOI | Zbl
[6] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ric. Mat., 71:2 (2022), 315–323 | DOI
[7] Touail Y., El Moutawakil D., “$\perp_{\psi F}$-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo (2), 70:3 (2021), 1459–1472 | DOI | Zbl
[8] Touail Y., El Moutawakil D., “Fixed point theorems for new contractions with application in dynamic programming”, Vestn. St. Petersbg. Univ., Math., 54:2 (2021), 206–212 | DOI | Zbl
[9] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonlinear Anal. Appl., 12:2 (2021), 1801–1809 | DOI
[10] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian-Eur. J. Math., 15:4 (2022), 2250080 | DOI | Zbl
[11] Touail Y., Jaid A., El Moutawakil D., “New contribution in fixed point theory via an auxiliary function with an application”, Ric. Mat., 72:1 (2023), 181–191 | DOI | Zbl
[12] Aamri M., El Moutawakil D., “$\tau$-distance in general topological spaces $(X, \tau)$ with application to fixed point theory”, Southwest J. Pure Appl. Math., 2003, no. 2, 1–6 https://eudml.org/doc/123956 | Zbl