A note on common fixed point theorems in a~bounded metric space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 241-249

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the concept of $T_\beta$-contraction for a pair of commuting self-mappings and prove a common fixed point theorem for this type. Our results improve and extend many existing results in the literature. The paper also contains an application for non-linear integral equations.
Keywords: fixed point, $T_\beta$-contraction
Mots-clés : $T-\alpha$-admissible, $\tau$-distance.
@article{VSGTU_2023_27_2_a2,
     author = {Y. Touail and A. Jaid and D. El Moutawakil},
     title = {A note on common fixed point theorems in a~bounded metric space},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/}
}
TY  - JOUR
AU  - Y. Touail
AU  - A. Jaid
AU  - D. El Moutawakil
TI  - A note on common fixed point theorems in a~bounded metric space
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 241
EP  - 249
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/
LA  - en
ID  - VSGTU_2023_27_2_a2
ER  - 
%0 Journal Article
%A Y. Touail
%A A. Jaid
%A D. El Moutawakil
%T A note on common fixed point theorems in a~bounded metric space
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 241-249
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/
%G en
%F VSGTU_2023_27_2_a2
Y. Touail; A. Jaid; D. El Moutawakil. A note on common fixed point theorems in a~bounded metric space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 241-249. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a2/