Estimation of the velocity field in a continuous elastoplastic~medium during a~camouflet explosion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 384-393.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a solution to the centrally symmetric problem of determining the velocity field in a continuous elastoplastic medium during a camouflet explosion, assuming that the motion of the camouflet cavity is non-oscillatory and that the medium is incompressible in both the plastic and elastic regions. Dependencies for determining the size of the expansion zones and plastic deformation of the medium are obtained. The solution is based on the “camouflet equation” — a relationship for determining the pressure on the contact surface of the expanding spherical cavity due to internal pressure.
Keywords: elastoplastic medium, camouflage cavity, velocity field, expansion
Mots-clés : camouflage explosion.
@article{VSGTU_2023_27_2_a10,
     author = {V. A. Sednev and S. L. Kopnyshev and A. V. Sednev},
     title = {Estimation of the velocity field in a continuous elastoplastic~medium during a~camouflet explosion},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {384--393},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a10/}
}
TY  - JOUR
AU  - V. A. Sednev
AU  - S. L. Kopnyshev
AU  - A. V. Sednev
TI  - Estimation of the velocity field in a continuous elastoplastic~medium during a~camouflet explosion
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 384
EP  - 393
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a10/
LA  - ru
ID  - VSGTU_2023_27_2_a10
ER  - 
%0 Journal Article
%A V. A. Sednev
%A S. L. Kopnyshev
%A A. V. Sednev
%T Estimation of the velocity field in a continuous elastoplastic~medium during a~camouflet explosion
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 384-393
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a10/
%G ru
%F VSGTU_2023_27_2_a10
V. A. Sednev; S. L. Kopnyshev; A. V. Sednev. Estimation of the velocity field in a continuous elastoplastic~medium during a~camouflet explosion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 2, pp. 384-393. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_2_a10/

[1] Bovt A. N., Lovetsky E. E., Selyakov V. I., et al., Mekhanicheskoe deistvie kamufletnogo vzryva [Mechanical Action of a Camouflage Explosion], Nedra, Moscow, 1990, 184 pp. (In Russian)

[2] Chadwick P., Cox A. D., Hopkins H. G., “Mechanics of deep underground explosions”, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 256:1070 (1964), 235–300 | DOI

[3] Lavrent'ev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli [Hydrodynamics Problems and Their Mathematical Models], Nauka, Moscow, 1977, 408 pp. (In Russian)

[4] Sednev V. A., Kopnyshev S. L., Sednev A. V., “Research of process stages and justification of mathematical model of spherical cavity expansion in soils and rocks”, Sustainable Development of Mountain Territories, 12:2(44) (2020), 302–312 (In Russian) | DOI

[5] Sednev V. A., Kopnyshev S. L., “The model of spherical cavity expansion in the elastoplastic environment with its hardening”, Engineering and Automation Problems, 2018, no. 4, 105–113 (In Russian)