Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2023_27_1_a3, author = {I. I. Hasanov and D. I. Akramova and A. A. Rakhmonov}, title = {Investigation of the {Cauchy} problem for one fractional order equation with the {Riemann--Liouville} operator}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {64--80}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/} }
TY - JOUR AU - I. I. Hasanov AU - D. I. Akramova AU - A. A. Rakhmonov TI - Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 64 EP - 80 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/ LA - ru ID - VSGTU_2023_27_1_a3 ER -
%0 Journal Article %A I. I. Hasanov %A D. I. Akramova %A A. A. Rakhmonov %T Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 64-80 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/ %G ru %F VSGTU_2023_27_1_a3
I. I. Hasanov; D. I. Akramova; A. A. Rakhmonov. Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 64-80. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/
[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | DOI | MR | Zbl
[2] Pskhu A. V., “Fractional diffusion equation with discretely distributed differentiation operator”, Sib. Èlektron. Mat. Izv., 13 (2016), 1078–1098 | DOI | MR | Zbl
[3] Parovik R. I., “Cauchy problem for the nonlocal equation diffusion-advection radon in fractal media”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 127–132 | DOI
[4] Mamchuev M. O., “Modified cauchy problem for a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:9 (2015), 1137–1144 | DOI | DOI
[5] Mamchuev M. O., “Fundamental solution of a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:5 (2015), 620–629 | DOI | DOI
[6] Durdiev D. K., Shishkina E. L., Sitnik S. M., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273 ; arXiv: [math.CA] 2009.10594 | DOI | Zbl | DOI
[7] Sultanov M. A., Durdiev D. K., Rahmonov A. A., “Construction of an explicit solution of a time-fractional multidimensional differential equation”, Mathematics, 9:17 (2021), 2052 | DOI
[8] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2014, xiv+443 pp. | DOI
[9] Mathai A. M., Saxena R. K., Haubold H. J., The $H$-Function. Theory and Applications, Springer, Berlin, Heidelberg, 2010, xiv+268 pp. | DOI