Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 64-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is dedicated to solving the Cauchy problem for a differential equation with a Riemann–Liouville fractional derivative. The initial condition is formulated in a natural way and it is proven that the resulting solution is regular. Firstly, a fundamental solution is constructed and its properties are analyzed. Then, based on these properties, the solution to the homogeneous equation in the Cauchy problem is studied. Furthermore, unlike other problems of this type, the solution to the Cauchy problem presented for a nonhomogeneous equation is explicitly obtained in this work using the Duhamel's principle and the three-parameter Mittag–Leffler function. By applying additional conditions to these problems, it is also demonstrated that this solution is classical.
Keywords: Riemann–Liouville fractional derivative, Cauchy problem, Green function, Mittag–Leffler function, Duhamel's principle.
@article{VSGTU_2023_27_1_a3,
     author = {I. I. Hasanov and D. I. Akramova and A. A. Rakhmonov},
     title = {Investigation of the {Cauchy} problem for one fractional order equation with the {Riemann--Liouville} operator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {64--80},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/}
}
TY  - JOUR
AU  - I. I. Hasanov
AU  - D. I. Akramova
AU  - A. A. Rakhmonov
TI  - Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2023
SP  - 64
EP  - 80
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/
LA  - ru
ID  - VSGTU_2023_27_1_a3
ER  - 
%0 Journal Article
%A I. I. Hasanov
%A D. I. Akramova
%A A. A. Rakhmonov
%T Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2023
%P 64-80
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/
%G ru
%F VSGTU_2023_27_1_a3
I. I. Hasanov; D. I. Akramova; A. A. Rakhmonov. Investigation of the Cauchy problem for one fractional order equation with the Riemann--Liouville operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 64-80. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/

[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | DOI | MR | Zbl

[2] Pskhu A. V., “Fractional diffusion equation with discretely distributed differentiation operator”, Sib. Èlektron. Mat. Izv., 13 (2016), 1078–1098 | DOI | MR | Zbl

[3] Parovik R. I., “Cauchy problem for the nonlocal equation diffusion-advection radon in fractal media”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 127–132 | DOI

[4] Mamchuev M. O., “Modified cauchy problem for a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:9 (2015), 1137–1144 | DOI | DOI

[5] Mamchuev M. O., “Fundamental solution of a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:5 (2015), 620–629 | DOI | DOI

[6] Durdiev D. K., Shishkina E. L., Sitnik S. M., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273 ; arXiv: [math.CA] 2009.10594 | DOI | Zbl | DOI

[7] Sultanov M. A., Durdiev D. K., Rahmonov A. A., “Construction of an explicit solution of a time-fractional multidimensional differential equation”, Mathematics, 9:17 (2021), 2052 | DOI

[8] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2014, xiv+443 pp. | DOI

[9] Mathai A. M., Saxena R. K., Haubold H. J., The $H$-Function. Theory and Applications, Springer, Berlin, Heidelberg, 2010, xiv+268 pp. | DOI