@article{VSGTU_2023_27_1_a3,
author = {I. I. Hasanov and D. I. Akramova and A. A. Rakhmonov},
title = {Investigation of the {Cauchy} problem for one fractional order equation with the {Riemann{\textendash}Liouville} operator},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {64--80},
year = {2023},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/}
}
TY - JOUR AU - I. I. Hasanov AU - D. I. Akramova AU - A. A. Rakhmonov TI - Investigation of the Cauchy problem for one fractional order equation with the Riemann–Liouville operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2023 SP - 64 EP - 80 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/ LA - ru ID - VSGTU_2023_27_1_a3 ER -
%0 Journal Article %A I. I. Hasanov %A D. I. Akramova %A A. A. Rakhmonov %T Investigation of the Cauchy problem for one fractional order equation with the Riemann–Liouville operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2023 %P 64-80 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/ %G ru %F VSGTU_2023_27_1_a3
I. I. Hasanov; D. I. Akramova; A. A. Rakhmonov. Investigation of the Cauchy problem for one fractional order equation with the Riemann–Liouville operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 27 (2023) no. 1, pp. 64-80. http://geodesic.mathdoc.fr/item/VSGTU_2023_27_1_a3/
[1] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | DOI | MR | Zbl
[2] Pskhu A. V., “Fractional diffusion equation with discretely distributed differentiation operator”, Sib. Èlektron. Mat. Izv., 13 (2016), 1078–1098 | DOI | MR | Zbl
[3] Parovik R. I., “Cauchy problem for the nonlocal equation diffusion-advection radon in fractal media”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 127–132 | DOI
[4] Mamchuev M. O., “Modified cauchy problem for a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:9 (2015), 1137–1144 | DOI | DOI
[5] Mamchuev M. O., “Fundamental solution of a loaded second-order parabolic equation with constant coefficients”, Diff. Equat., 51:5 (2015), 620–629 | DOI | DOI
[6] Durdiev D. K., Shishkina E. L., Sitnik S. M., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii J. Math., 42:6 (2021), 1264–1273 ; arXiv: [math.CA] 2009.10594 | DOI | Zbl | DOI
[7] Sultanov M. A., Durdiev D. K., Rahmonov A. A., “Construction of an explicit solution of a time-fractional multidimensional differential equation”, Mathematics, 9:17 (2021), 2052 | DOI
[8] Gorenflo R., Kilbas A. A., Mainardi F., Rogosin S. V., Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics, Springer, Berlin, Heidelberg, 2014, xiv+443 pp. | DOI
[9] Mathai A. M., Saxena R. K., Haubold H. J., The $H$-Function. Theory and Applications, Springer, Berlin, Heidelberg, 2010, xiv+268 pp. | DOI