Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_4_a3, author = {A. K. Urinov and D. A. Usmonov}, title = {An initial-boundary problem for a hyperbolic equation with~three lines of degenerating of the second kind}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {672--693}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a3/} }
TY - JOUR AU - A. K. Urinov AU - D. A. Usmonov TI - An initial-boundary problem for a hyperbolic equation with~three lines of degenerating of the second kind JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 672 EP - 693 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a3/ LA - ru ID - VSGTU_2022_26_4_a3 ER -
%0 Journal Article %A A. K. Urinov %A D. A. Usmonov %T An initial-boundary problem for a hyperbolic equation with~three lines of degenerating of the second kind %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 672-693 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a3/ %G ru %F VSGTU_2022_26_4_a3
A. K. Urinov; D. A. Usmonov. An initial-boundary problem for a hyperbolic equation with~three lines of degenerating of the second kind. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 4, pp. 672-693. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a3/
[1] Koshlyakov N. S., Smirnov M. M., Gliner E. B., Differential equations of mathematical physics, North-Holland Publ., Amsterdam, 1964, xvi+701 pp. | Zbl | Zbl
[2] Karol' I. L., “On the theory of equations of mixed type”, Dokl. Akad. Nauk SSSR, 88:3 (1953), 397–400 (In Russian) | Zbl
[3] Tersenov S. A., “On the Cauchy problem, with data given on a curve of degenerate type, for a hyperbolic equation”, Differ. Uravn., 2:1 (1966), 125–130 (In Russian) | MR
[4] Tersenov S. A., “On the theory of hyperbolic equations with data on a line of degeneration of type”, Sibirsk. Mat. Zh., 2:6 (1961), 913–935 (In Russian) | MR | Zbl
[5] Tersenov S. A., Vvedenie v teoriiu uravnenii, vyrozhdaiushchikhsia na granitse [Introduction to the Theory of Equations Degenerating at the Boundary], Novosib. Gos. Univ., Novosibirsk, 1973, 144 pp. (In Russian)
[6] Smirnov M. M., Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate Hyperbolic Equations], Vyssh. shk., Minsk, 1977, 157 pp. (In Russian) | Zbl
[7] Khairullin R. S., Zadacha Trikomi dlia uravneniia vtorogo roda s sil'nym vyrozhdeniem [Tricome's Problem for a Equation of the Second Kind with Strong Degeneration], Kazan Univ., Kazan, 2015, 336 pp. (In Russian)
[8] Mamadaliev N. K., “On representation of a solution to a modified Cauchy problem”, Sib. Math. J., 41:5 (2000), 889–899 | DOI | MR | Zbl
[9] Urinov A. K., Okboev A. B., “Modified Cauchy problem for one degenerate hyperbolic equation of the second kind”, Ukr. Math. J., 72:1 (2020), 114–135 | DOI | Zbl
[10] Urinov A. K., Okboev A. B., “On a Cauchy type problem for a second kind degenerating hyperbolic equation”, Lobachevskii J. Math., 43:3 (2022), 793–803 | DOI
[11] Urinov A. K., Usmonov D. A., “About modified Cauchy problem for a second kind degenerated hyperbolic equation”, Bull. Inst. Math., 4:1 (2021), 46–63 (In Russian)
[12] Ehrgashev T. G., “Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, 41–49 (In Russian) | DOI
[13] Baikuziev K. B., “Mixed problem for one hyperbolic equation degenerating on a contour”, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 6:2 (1962), 83–85 (In Russian) | Zbl
[14] Karimov D. H., Baikuziev K. B., “A mixed problem for a hyperbolic equation degenerating on the boundary of the domain”, Nauchn. Tr. Tashkent. Gos. Univ., 208 (1962), 90–97 (In Russian) | Zbl
[15] Karimov D. H., Baikuziev K. B., “The second mixed problem for one hyperbolic equation degenerating on the boundary of the domain”, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 8:6 (1964), 27–30 (In Russian) | Zbl
[16] Baikuziev K. B., “On the solvability of mixed problems for a class of non-linear equations of hyperbolic type that degenerate on the boundary of a domain”, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 11:2 (1967), 3–6 (In Russian)
[17] Baikuziev K. B., Karimov D. H., “On the solvability of a mixed problem for hyperbolic equations that degenerates on the entire boundary of the domain”, Tr. Tashkent. Gos. Univ., 2:350 (1969), 8–20 (In Russian)
[18] Datkabayev D., “A mixed problem for a system of second-order equations that degenerate on the entire boundary of the domain”, Probl. Fiz.-Mat. Nauk. Tashkent, 164 (1976), 32–38 (In Russian)
[19] Krasnov M. L., “Mixed boundary problems for degenerate linear hyperbolic differential equations second order”, Mat. Sb. (N.S.), 49(91):1 (1959), 29–84 (In Russian) | MR | Zbl
[20] Oleinik O. A., “The Cauchy problem and the boundary value problem for second-order hyperbolic equations degenerating in a domain and on its boundary”, Sov. Math., Dokl., 7 (1966), 969–973 | MR | Zbl
[21] Bryukhanov V. A., “A mixed problem for a hyperbolic equation degenerate on a part of the bounday of a region”, Differ. Uravn., 8:1 (1972), 3–6 (In Russian) | Zbl
[22] Vragov V. N., “A mixed problem for a certain class of second order hyperbolic-parabolic equations”, Differ. Uravn., 12:1 (1976), 24–31 (In Russian) | MR | Zbl
[23] Bubnov B. A., “A mixed problem for certain parabolic-hyperbolic equations”, Differ. Uravn., 12:3 (1976), 494–501 (In Russian) | MR | Zbl
[24] Baranovskii F. T., “Mixed problem for a second-order hyperbolic equation which is strongly degenerate on the initial plane”, Sib. Math. J., 20:3 (1979), 338–346 | DOI | MR | Zbl
[25] Baranovskii F. T., “A mixed boundary value problem for a hyperbolic equation with degenerate principal part”, Sb. Math., 43:4 (1982), 499–513 | DOI | MR | Zbl
[26] Sabitov K. B., Suleimanova A. Kh., “The Dirichlet problem for a mixed-type equation of the second kind in a rectangular domain”, Russian Math. (Iz. VUZ), 51:4 (2007), 42–50 | DOI | MR | Zbl
[27] Sabitov K. B., Suleimanova A. Kh., “The Dirichlet problem for a mixed-type equation with characteristic degeneration in a rectangular domain”, Russian Math. (Iz. VUZ), 53:11 (2009), 37–45 | DOI | MR | Zbl
[28] Sabitov K. B., Egorova I. P., “On the correctness of boundary value problems for the mixed type equation of the second kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019), 430–451 (In Russian) | DOI
[29] Khairullin R. S., “Dirichlet problem for a mixed type equation of the second kind in exceptional cases”, Differ. Equat., 54:4 (2018), 562–562 | DOI | DOI
[30] Khairullin R. S., “Problem with a periodicity condition for an equation of the mixed type with strong degeneration”, Differ. Equat., 55:8 (2019), 1105–1117 | DOI | DOI
[31] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | MR | Zbl
[32] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Fizmatlit, Moscow, 2010 (In Russian) | Zbl
[33] Mikhlin S. G., Lektsii po lineinym integral'nym uravneniiam [Lectures on Linear Integral Equations], Fizmatlit, Moscow, 1959, 232 pp. (In Russian) | Zbl
[34] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge Univ., Cambridge, 1995, vi+804 pp. | Zbl