Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_4_a2, author = {K. B. Sabitov}, title = {Vibrations of plate with boundary ``hinged attachment'' conditions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {650--671}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a2/} }
TY - JOUR AU - K. B. Sabitov TI - Vibrations of plate with boundary ``hinged attachment'' conditions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 650 EP - 671 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a2/ LA - ru ID - VSGTU_2022_26_4_a2 ER -
%0 Journal Article %A K. B. Sabitov %T Vibrations of plate with boundary ``hinged attachment'' conditions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 650-671 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a2/ %G ru %F VSGTU_2022_26_4_a2
K. B. Sabitov. Vibrations of plate with boundary ``hinged attachment'' conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 4, pp. 650-671. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_4_a2/
[1] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1966, 724 pp. (In Russian)
[2] Timoshenko S. P., Kolebaniia v inzhenernom dele [Fluctuations in Engineering], Fizmatlit, Moscow, 1967, 444 pp. (In Russian)
[3] Timoshenko S. P., Woinowsky–Krieger S., Plastinki i obolochki [Theory of Plates and Shells], Nauka, Moscow, 1966, 636 pp. (In Russian Timoshenko S. P., Woinowsky–Krieger S.)
[4] Gould S., Variatsionnye metody v zadachakh o sobstvennykh znacheniiakh: Vvedenie v metod promezhutochnykh zadach Vainshteina [Variational Methods for Eigenvalue Problems: An Introduction to the Weinstein Method of Intermediate Problem], Mir, Moscow, 1970, 328 pp. (In Russian)
[5] Filippov A. P., Kolebaniia deformiruemykh sistem [Oscillations of Deformable Systems], Mashinostroenie, Moscow, 1970, 734 pp. (In Russian)
[6] Andrianov I. V., Danishevskii V. V., Ivankov A. O., Asimptoticheskie metody v teorii kolebanii balok i plastin [Asymptotic Methods in the Theory of Vibrations of Beams and Plates], Prydniprovska State Academy of Civil Engineering and Architecture, Dnepropetrovsk, 2010, 217 pp. (In Russian)
[7] Sabitov K. B., “Fluctuations of a beam with clamped ends”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 311–324 (In Russian) | DOI | Zbl
[8] Sabitov K. B., “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equat., 53:1 (2017), 86–98 | DOI | DOI
[9] Sabitov K. B., “Cauchy problem for the beam vibration equation”, Differ. Equat., 53:5 (2017), 658–664 | DOI | DOI
[10] Sabitov K. B., Akimov A. A., “Initial-boundary value problem for a nonlinear beam vibration equation”, Differ. Equat., 56:5 (2020), 621–634 | DOI | DOI
[11] Sabitov K. B., “Inverse problems of determining the right-hand side and the initial conditions for the beam vibration equation”, Differ. Equat., 56:6 (2020), 761–774 | DOI | DOI
[12] Sabitov K. B., “Initial-boundary value problems for equation of oscillations of a rectangular plate”, Russian Math., 65:10 (2021), 52–62 | DOI | DOI
[13] Sabitov K. B., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Fizmatlit, Moscow, 2013, 352 pp. (In Russian)
[14] Young D., “Vibration of rectangular plates by the Ritz method”, J. Appl. Mech., 17:4 (1950), 448–453 | DOI