Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_3_a8, author = {N. Yu. Enatskaya}, title = {Probabilistic models for the analysis of inverse extremal problems in combinatorics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {573--591}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a8/} }
TY - JOUR AU - N. Yu. Enatskaya TI - Probabilistic models for the analysis of inverse extremal problems in combinatorics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 573 EP - 591 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a8/ LA - ru ID - VSGTU_2022_26_3_a8 ER -
%0 Journal Article %A N. Yu. Enatskaya %T Probabilistic models for the analysis of inverse extremal problems in combinatorics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 573-591 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a8/ %G ru %F VSGTU_2022_26_3_a8
N. Yu. Enatskaya. Probabilistic models for the analysis of inverse extremal problems in combinatorics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 573-591. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a8/
[1] Afanas'ev M. Yu., Suvorov B. P., Issledovanie operatsii v ekonomike. Modeli, zadachi, resheniia [Operations Research in Economics. Models, Tasks, Solutions], INFRA-M, Moscow, 2003, 202 pp. (In Russian)
[2] Baranov V. I., Stechkin B. S., Ekstremal'nye kombinatornye zadachi i ikh prilozheniia [Extremal Combinatorial Problems and Their Applications], Fizmatlit, Moscow, 2004, 240 pp. (In Russian)
[3] Kolchin V. F., “On the limiting behavior of extreme order statistics in a polynomial scheme”, Theory Probab. Appl., 14:3 (1969), 458–469 | DOI | MR | Zbl
[4] Khakimullin E.R., “Asymptotic behavior of the maximum occupancy in an equiprobable scheme of allocation of particles by complexes”, Math. Notes, 30:2 (1981), 626–633 | DOI | MR | Zbl
[5] Viktorova I. I., “Asymptotic behavior of maximum of an equiprobable polynomial scheme”, Math. Notes, 5:3 (1969), 184–191 | DOI | MR | Zbl
[6] Enatskaya N. Yu., “Probabilistic models of combinatorial schemes”, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software, 13:3 (2020), 103–111 (In Russian) | DOI
[7] Enatskaya N. Yu., “Analysis of combinatorial schemes in the pre-asymptotic region of parameter change”, Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2018, no. 7, 117–133 (In Russian) | DOI