Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 520-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

The transfer of ions near ion-exchange membranes causes concentration polarization, which significantly complicates mass transfer in electromembrane systems. Spacers are used to neutralize the effect of concentration polarization and increase mass transfer. Spacers reduce the thickness of the boundary layer by increasing the mixing depth of the solution and creating a normal component of convective transport; ions can reach membranes faster, and the current increases, from a hydrodynamic point of view. However, spacers significantly increase the hydrodynamic resistance and consequently the cost of pumping the solution. For the first time, the main regularities of the transfer of salt ions in the desalination channel of an electrodialysis apparatus with spacers of various shapes and arrangements are determined, taking into account electroconvection, in overlimiting current modes. Namely, it is shown, using the current-voltage characteristic, that spacers of different shapes and locations are optimal at different stages of the desalination process. The paper presents the results of mathematical and simulation modeling of the salt ion transport process in electromembrane systems with spacers in overlimiting current modes. 2D direct numerical simulation was carried out for the coupled system of the Nernst–Planck–Poisson and Navier–Stokes equations without fitting parameters. The finite element method was used in combination with the method of successive approximations and segregation to solve boundary value problems for systems of nonlinear differential equations with partial derivatives. The novelty of the method lies in the fact that after discretization in time, the problem on each time layer is split into hydrodynamic and electrochemical problems, each of which is solved by the method of successive approximations until a complete mutual agreement.
Keywords: electromembrane system, spacers, mass transfer, ion transfer, mathematical model.
@article{VSGTU_2022_26_3_a5,
     author = {A. V. Kovalenko and A. {\CYRM}. Uzdenova and A. V. Ovsyannikova and M. H. Urtenov and R. A. Bostanov},
     title = {Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {520--543},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a5/}
}
TY  - JOUR
AU  - A. V. Kovalenko
AU  - A. М. Uzdenova
AU  - A. V. Ovsyannikova
AU  - M. H. Urtenov
AU  - R. A. Bostanov
TI  - Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 520
EP  - 543
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a5/
LA  - ru
ID  - VSGTU_2022_26_3_a5
ER  - 
%0 Journal Article
%A A. V. Kovalenko
%A A. М. Uzdenova
%A A. V. Ovsyannikova
%A M. H. Urtenov
%A R. A. Bostanov
%T Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 520-543
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a5/
%G ru
%F VSGTU_2022_26_3_a5
A. V. Kovalenko; A. М. Uzdenova; A. V. Ovsyannikova; M. H. Urtenov; R. A. Bostanov. Mathematical modeling of the effect of spacers on mass transfer in electromembrane systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 520-543. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a5/

[1] Długołec̨ki P., Gambier A., Nijmeijer K., Wessling M., “Practical potential of reverse electrodialysis as process for sustainable energy generation”, Environ. Sci. Technol., 43:17 (2009), 6888–6894 | DOI

[2] Strathmann H., “Electrodialysis, a mature technology with a multitude of new applications”, Desalination, 264:3 (2010), 268–288 | DOI

[3] Sonin A. A., Isaacson M. S., “Optimization of flow design in forced flow electrochemical systems, with special application to electrodialysis”, Ind. Eng. Chem. Process Des. Dev., 13:3 (1974), 241–248 | DOI

[4] Balster J., Pünt I., Stamatialis D., Wessling M., “Multi-layer spacer geometries with improved mass transport”, J. Membr. Sci., 282:1–2 (2006), 351–361 | DOI

[5] Winograd Y., Solan A., Toren M., “Mass transfer in narrow channels in the presence of turbulence promoters”, Desalination, 13:2 (1973), 171–186 | DOI

[6] Kim Y., Walker W. S., Lawler D. F., “Electrodialysis with spacers: Effects of variation and correlation of boundary layer thickness”, Desalination, 274:1–3 (2011), 54–63 | DOI

[7] La Cerva M. L., Liberto M. D., Gurreri L., Tamburini A., Cipollina A., Micale G., Ciofalo M., “Coupling CFD with a one-dimensional model to predict the performance of reverse electrodialysis stacks”, J. Membr. Sci., 541 (2017), 595–610 | DOI

[8] Bashurov V. V., Prosviryakov E. Yu., “Steady thermo-diffusive shear Couette flow of incompressible fluid. Velocity field analysis”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2017), 763–775 | DOI | Zbl

[9] Gurreri L., Battaglia G., Tamburini A., Micale G., Ciofalo M., “Multi-physical modelling of reverse electrodialysis thickness”, Desalination, 423 (2017), 52–64 | DOI

[10] Zhou C., Zhang H., Li Z., Wang W., “Chemistry pumps: A review of chemically powered micropumps”, Lab Chip, 16:10 (2016), 1797–1811 | DOI

[11] Tadimeti J. G. D., Kurian V., Chandra A., Chattopadhyay S., “Corrugated membrane surfaces for effective ion transport in electrodialysis”, J. Membr. Sci., 499 (2016), 418–428 | DOI

[12] Kovalenko A. V., Evdochenko E., Stockmeier F., Köller N., Urtenov M. A. Kh., “Influence of spacers on mass transport in electromembrane desalination systems”, J. Phys.: Conf. Ser., 2131:2 (2021), 022011 | DOI

[13] Vasil'eva V., Shaposhnik V., Grigorchuk O., “Local mass transport during electrodialysis with ion-exchange membranes and spacers”, Russ. J. Electrochem., 37:11 (2001), 1164–1171 | DOI

[14] Kim I. H., Chang H. N., “Experimental study of mass transport around a turbulence promoter by the limiting current method”, Intern. J. Heat and Mass Transfer, 26:7 (1983), 1007–1016 | DOI

[15] Fischl D. S., Hanson K. J., Muller R. H., Tobias C. W., “Mass transfer enhancement by small flow obstacles in electrochemical cells”, Chem. Eng. Commun., 38:3-6 (1985), 191–207 | DOI

[16] Długołec̨ki P., Dąbrowska J., Nijmeijer K., Wessling M., “Ion conductive spacers for increased power generation in reverse electrodialysis”, J. Membr. Sci., 347:1–2 (2010), 101–107 | DOI

[17] Balster J., Stamatialis D., Wessling M., “Membrane with integrated spacer”, J. Membr. Sci., 360:1-2 (2010), 185–189 | DOI

[18] Kim B., Choi S., Pham V. S., Kwak Rh., Han J., “Energy efficiency enhancement of electromembrane desalination systems by local flow redistribution optimized for the asymmetry of cation/anion diffusivity”, J. Membr. Sci., 524 (2017), 280–287 | DOI

[19] Urtenov M. K., Uzdenova A. M., Kovalenko A. V., Nikonenko V. V., Pismenskaya N. D., Vasil'eva V. I., Sistat P., Pourcelly G., “Basic mathematical model of overlimiting transfer enhanced by electroconvection in flow-through electrodialysis membrane cells”, J. Membr. Sci., 447 (2013), 190–202 | DOI

[20] Uzdenova A. M., Kovalenko A. V., Urtenov M. Kh., Matematicheskie modeli elektrokonvektsii v elektromembrannykh sistemakh [Mathematical Models of Electroconvection in Electromembrane Systems], Karachay-Cherkess State Univ., Karachaevsk, 2011, 154 pp. (In Russian)

[21] Kwak R., Pham V. S., Lim K. M., Han J., “Shear ow of an electrically charged uid by ion concentration polarization: scaling laws for electroconvective vortices”, Phys. Rev. Lett., 110:11 (2013), 114501 | DOI

[22] Nikonenko V. V., Mareev S. A., Pis'menskaya N. D., Kovalenko A. V., Urtenov M. K., Uzdenova A. M., Pourcelly G., “Effect of electroconvection and its use in intensifying the mass transfer in electrodialysis (review)”, Russ. J. Electrochem., 53:10 (2017), 1122–1144 | DOI | DOI

[23] Chubyr' N. O., Kovalenko A. V., Urtenov M. Kh., Dvumernye matematicheskie modeli perenosa binarnogo elektrolita v membrannykh sistemakh (chislennyi i asimptoticheskii analiz) Two-Dimensional Mathematical Models of Binary Electrolyte Transfer in Membrane Systems (Numerical and Asymptotic Analysis), Kuban State Technol. Univ., Krasnodar, 2012, 132 pp. (In Russian)

[24] Nikonenko V. V., Kovalenko A. V., Urtenov M. K., Pismenskaya N. D., Han J., Sistat P., Pourcelly G., “Desalination at overlimiting currents: State-of-the-art and perspectives”, Desalination, 342 (2014), 85–106 | DOI

[25] Burmasheva N. V., Prosviryakov E. Yu., “Exact solutions to the Navier–Stokes equations describing stratified fluid flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 491–507 | DOI | Zbl

[26] Ershkov S. V., Prosviryakov E. Yu., Burmasheva N. V., Christianto V., “Towards understanding the algorithms for solving the Navier–Stokes equations”, Fluid Dyn. Res., 53:4 (2021), 044501 | DOI

[27] Urtenov K. M., Kovalenko A. V., Chubyr N. O., Khromykh A. A., “Boundary value problem for current density in the area of space charge”, Ekol. Vestn. Nauchn. Tsentr. Chernomorsk. Ekonomich. Sotrudn., 7:1 (2010), 70–73 (In Russian)

[28] Kovalenko A. V., Wessling M., Nikonenko V. V., Mareev S. A., Moroz I. A., Evdochenko E., Urtenov M. Kh., “Space-charge breakdown phenomenon and spatio-temporal ion concentration and fluid flow patterns in overlimiting current electrodialysis”, J. Membr. Sci., 636 (2021), 119583 | DOI

[29] Urtenov M. K., Kovalenko A. V., Sukhinov A. I., Chubyr N. O., Gudza V. A., “Model and numerical experiment for calculating the theoretical current-voltage characteristic in electro-membrane systems”, IOP Conf. Ser.: Mater. Sci. Eng., 680 (2019), 012030 | DOI

[30] Kovalenko A. V., Urtenov M. K., “Analysis of the theoretical CVC of electromembrane systems”, E3S Web Conf., 224 (2020), 02010 | DOI

[31] Kovalenko A. V., Gudza I. V., Pismensky A. V., Chubyr N. O., Urtenov M. Kh., “Theoretical analysis of the current-voltage characteristic of the unsteady 1:1 electrolyte transfer in membrane systems in terms of electroconvection and the dissociation/recombination reaction of water”, Model. Optimiz. Inform. Technol., 9:3 (2021), 27 (In Russian) | DOI

[32] Kovalenko A. V., Gudza I. V., Chubyr N. O., Urtenov M. Kh., Khromykh A. A., “Formula for calculating the theoretical current-voltage characteristic of the 3D desalination channel EDA”, Model. Optimiz. Inform. Technol., 9:4 (2021), 35 (In Russian) | DOI

[33] Gudza I. V., Urtenov M.A.Kh., Kovalenko A. V., Chubyr N. O., “Analysis of the theoretical current-voltage characteristic in electromembrane systems”, Ion Transport in Organic and Inorganic Membranes – 2021, Conf. Proceed., Sochi, 2021, 113–114

[34] Kovalenko A. V., Mathematical modeling of transfer processes in electromembrane systems, Doct. Disser. (Techn. Sci.), North Caucasian Federal Univ., Stavropol, 2019, 507 pp. (In Russian)

[35] Kovalenko A. V., Vasil'eva V. I., Nikonenko V. V., Uzdenova A. M., Urtenov M. Kh., Sistat P., Belashova E. D., “Similarity theory of transport processes in electrodialysis desalination channel”, Kondens. Sredy Mezhf. Gran., 16:4 (2014), 439–448 (In Russian)

[36] Kovalenko A. V., Uzdenova A. M., Nikonenko V. V., Urtenov M. Kh., “Criterial numbers describing formation of unstable electroconvective vortices in an electrodialysis desalination channel”, Sorb. Khromatogr. Prots., 14:2 (2014), 260–269 (In Russian)

[37] Idelchik I. E., Spravochnik po gidrodinamicheskim soprotivleniiam [Handbook of Hydrodynamic Resistance]ed. . M. O. Steinberg, Mashinostroenie, Moscow, 1992, 672 pp.