Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_3_a2, author = {Kh. A. Khachatryan and H. S. Petrosyan}, title = {Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {446--479}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a2/} }
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 446 EP - 479 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a2/ LA - ru ID - VSGTU_2022_26_3_a2 ER -
%0 Journal Article %A Kh. A. Khachatryan %A H. S. Petrosyan %T Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 446-479 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a2/ %G ru %F VSGTU_2022_26_3_a2
Kh. A. Khachatryan; H. S. Petrosyan. Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 3, pp. 446-479. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_3_a2/
[1] Aref'eva I. Ya., “Rolling tachyon on non-BPS branes and $p$-adic strings”, Proc. Steklov Inst. Math., 245 (2004), 40–47 | MR | Zbl
[2] Vladimirov V. S., Volovich Ya. I., “Nonlinear dynamics equation in $p$-adic string theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl
[3] Kogan M. N., Rarefied Gas Dynamics, Springer Science, New York, 1969, xi+515 pp.
[4] Khachatryan A. K., Khachatryan K. A., “Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave”, Theoret. and Math. Phys., 189:2 (2016), 1609–1623 | DOI | DOI | MR
[5] Engibaryan N. B., Khachatryan A. Kh., “Exact linearization of the sliding problem for a dilute gas in the Bhatnagar–Gross–Krook model”, Theoret. and Math. Phys., 125:2 (2000), 1589–1592 | DOI | DOI | MR | Zbl
[6] Engibaryan N. B., “A nonlinear problem of radiative transfer”, Astrophysics, 2:1 (1966), 12–14 | DOI
[7] Sobolev V. V., “The Milne problem for an inhomogeneous atmosphere”, Dokl. Akad. Nauk SSSR, 239:3 (1978), 558–561 (In Russian) | MR
[8] Arabadzhyan L. G., “On an integral equation of transport theory in an inhomogeneous medium”, Differ. Uravn., 23:9 (1987), 1618–1622 (In Russian) | MR | Zbl
[9] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biology, 6:2 (1978), 109–130 | DOI
[10] Diekmann O., Kaper H. G., “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Analysis, Theory, Methods and Applications, 2:6 (1978), 721–737 | DOI
[11] Joukovskaya L. V., “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, Theoret. and Math. Phys., 146:3 (2006), 335–342 | DOI | DOI | MR
[12] Vladimirov V. S., “Solutions of $p$-adic string equations”, Theoret. and Math. Phys., 167:2 (2011), 539–546 | DOI | DOI | MR
[13] Vladimirov V. S., “The equation of the $ p$-adic open string for the scalar tachyon field”, Izv. Math., 69:3 (2005), 487–512 | DOI
[14] Khachatryan Kh. A., “On the solubility of certain classes of non-linear integral equations in $ p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | DOI | MR
[15] Khachatryan Kh. A., “Solvability of some nonlinear boundary value problems for singular integral equations of convolution type”, Trans. Moscow Math. Soc., 81:1 (2020), 1–31 | DOI
[16] Khachatryan Kh. A., “On the solvability of a boundary value problem in $p$-adic string theory”, Trans. Moscow Math. Soc., 2018, 101–115 | DOI
[17] Arabadzhyan L. G., “Solutions of certain integral equations of the Hammerstein type”, J. Contemp. Math. Anal., 32:1 (1997), 17–24 | MR | Zbl
[18] Khachatryan A. Kh., Khachatryan Kh. A., “On solvability of one class of Hammerstein nonlinear integral equations”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 2, 67–83 | MR | Zbl
[19] Khachatryan Kh. A., “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189 | DOI | DOI | MR | Zbl
[20] Khachatryan K. A., Petrosyan H. S., “On the solvability of a class of nonlinear Hammerstein—Stieltjes integral equations on the whole line”, Proc. Steklov Inst. Math., 308 (2020), 238–249 | DOI | DOI | MR
[21] Khachatryan Kh. A., Petrosyan H. S., “One parameter families of positive solution of some classes of convolution type nonlinear integral equations”, J. Math. Sci., 231:2 (2018), 153–167 | DOI | DOI
[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the Theory of Functions and Functional Analysis], Nauka, Moscow, 1981, 542 pp. (In Russian)
[23] Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S., “Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem”, Trudy Inst. Mat. Mekh. UrO RAN, 27:1 (2021), 188–206 (In Russian) | DOI