Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_2_a7, author = {E. V. Solomin and A. A. Terekhin and A. S. Martyanov and A. A. Kovalyov and D. R. Ismagilov and G. N. Ryavkin and A. Z. Kulganatov and B. T. Pogorelov}, title = {Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {339--354}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/} }
TY - JOUR AU - E. V. Solomin AU - A. A. Terekhin AU - A. S. Martyanov AU - A. A. Kovalyov AU - D. R. Ismagilov AU - G. N. Ryavkin AU - A. Z. Kulganatov AU - B. T. Pogorelov TI - Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 339 EP - 354 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/ LA - ru ID - VSGTU_2022_26_2_a7 ER -
%0 Journal Article %A E. V. Solomin %A A. A. Terekhin %A A. S. Martyanov %A A. A. Kovalyov %A D. R. Ismagilov %A G. N. Ryavkin %A A. Z. Kulganatov %A B. T. Pogorelov %T Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 339-354 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/ %G ru %F VSGTU_2022_26_2_a7
E. V. Solomin; A. A. Terekhin; A. S. Martyanov; A. A. Kovalyov; D. R. Ismagilov; G. N. Ryavkin; A. Z. Kulganatov; B. T. Pogorelov. Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 339-354. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/
[1] Ahmadi M. H. B., Yang Z., “The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine”, Renewable Energy, 151 (2020), 1008–1015 | DOI
[2] Posa A., Broglia R., Balaras E., “Instability of the tip vortices shed by an axial-flow turbine in uniform flow”, J. Fluid Mech., 920 (2021), 920A19-1 | DOI
[3] Wilcox D. C., Turbulence Modeling for CFD, DCW Industries, California, 1994, 460 pp.
[4] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI
[5] Chung T. J., Computational Fluid Dynamics, Cambridge Univ. Press, London, 2010, xxii+1034 pp. | DOI | Zbl
[6] Versteeg H., Malalasekra W., An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Prentice Hall, London, 2007, xiii+503 pp.
[7] Ferziger J. H., Peric M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002, xiv+426 pp. | DOI | Zbl
[8] ANSYS® CFX – Solver Theory Guide, Release 16.0, Ansys ANSYS, Inc., Canonsburg, PA, 2016
[9] Anderson J. D., Computional Fluid Dynamics: The Basics with Applications, McGraw-Hill Series in Aeronautical and Aerospace Engineering, Mcgraw-Hill, Inc., New York, 1995, xxv+547 pp.
[10] Wesseling P., Principles of Computational Fluid Dynamics, Springer Series in Computational Mathematics, 29, Springer-Verlag, Berlin, Heidelberg, 2001, xii+644 pp. | DOI
[11] Belov I. A., Modelirovanie turbulentnykh techenii [Simulation of Turbulent Flows], Baltic State Techn. Univ., St. Petersburg, 2001, 108 pp. (In Russian)
[12] El Tahry S. H., “$k{-}\epsilon$ equation for compressible reciprocating engine flows”, J. Energy, 7:4 (1983), 345–353 | DOI
[13] Troshko A. A, Hassan Y. A., “A two-equation turbulence model of turbulent bubbly flows”, Int. J. Multiphase Flow, 27:11 (2001), 1965–2000 | DOI | Zbl
[14] Menter F. R., Eddy viscosity transport equations and their relation to the $k{-}\varepsilon$ model, NASA Technical Memorandum 108854, 1994
[15] Menter F. R., “Eddy viscosity transport equations and their relation to the $k{-}\varepsilon$ model”, J. Fluids Eng., 119:4 (1997), 876–884 | DOI
[16] Ansys Fluent 12.0 Theory Guide – 4.5.2 Shear-Stress Transport (SST) $k{-}{\omega}$ Model, Technical Documentation, 2009 https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm
[17] Snegirev A. Yu., Vysokoproizvoditel'nye vychisleniia v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii [Computer-Intensive Simulations in Technical Physics. Modeling and Simulations of Turbulent Flows], Politechn. Univ., St. Petersburg, 2009, 143 pp. (In Russian)
[18] Wind power plant Siemens: SWT–3.6–120, Technical documentation, 2021 https://pdf.archiexpo.com/pdf/siemens-gamesa/swt-36-120/88089-134487.html
[19] Solomin E. V., Terekhin A. A., Martyanov A. S., Kovalyov A. A., Ismagilov D. R., Miroshnichenko A. A., Yang Yu., Ryavkin G. N., “Horizontal-axis wind turbine weathervane yaw differential error”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 365–380 (In Russian) | DOI | Zbl
[20] Bogdanov S. N., Burtsev S. I., Ivanov O. P., Kupriianova A. V., Kholodil'naia tekhnika. Konditsionirovanie vozdukha [Refrigeration Equipment. Air Conditioning], SPbGAKhPT, St. Petersburg, 1999, 320 pp. (In Russian)
[21] Roshko A., On the development of turbulent wakes from vortex streets, Technical Report no. 1191, National Advisory Committee for Aeronautics, Washington, D.C., 1954, 25 pp. https://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191
[22] Shlikhting G., Boundary-Layer Theory, Springer-Verlag, Berlin, Heidelberg, 2000, xxiii+799 pp. | DOI