Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 339-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the results of mathematical modeling of the external flow of Siemens 3D model SWT–3.6–120 (B52 air foil) horizontal axis wind turbine (HAWT), using the Navier–Stokes equations averaged by Reynolds (RANS) closed by $k{-}\varepsilon$, $k{-}\omega$ Shear Stress Transport (SST) and Eddy Viscosity Transport (EVT) turbulence models. The task of correct determination of the wind speed vector deviation angle over the nacelle of the HAWT is required by operation of the yawing system, which determines in turn the efficiency of the entire turbine. The Struhal number was chosen as a comparison criterion, defined for the transverse flow around the cylinder, describing the frequency of the formation of vortex structure behind the butt part of the blade of the HAWT. The calculated area consists of 3 million tetrahedral volumes with prismatic layer on the surface of the nacelle, using local grinding. The place of flow direction parameters registration is located at a height of 3 m above the nacelle and at a distance of 8 m from the blade shank, which corresponds to the standard location of the weather vane. The analysis of the obtained results showed that the $k{-}\varepsilon$ and EVT turbulence models describe the flow parameters over the HAWT nacelle in almost the same way, but the EVT model represents just one differential equation, thereby it is preferable by the computational cost criterion. Also, one of the advantages of one-parameter turbulence model (EVT model) is a smaller number of closing semi-empirical constants, the analysis of which allows the expanding of the engineering techniques scope for the modeling of turbulent processes in solving the practical problems related to the design of control systems for the wind turbines, increasing their efficiency.
Keywords: wind, horizontal-axial wind power plant, Strouhal number, weather vane, electricity, blade, aerodynamic profile
Mots-clés : vortex.
@article{VSGTU_2022_26_2_a7,
     author = {E. V. Solomin and A. A. Terekhin and A. S. Martyanov and A. A. Kovalyov and D. R. Ismagilov and G. N. Ryavkin and A. Z. Kulganatov and B. T. Pogorelov},
     title = {Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/}
}
TY  - JOUR
AU  - E. V. Solomin
AU  - A. A. Terekhin
AU  - A. S. Martyanov
AU  - A. A. Kovalyov
AU  - D. R. Ismagilov
AU  - G. N. Ryavkin
AU  - A. Z. Kulganatov
AU  - B. T. Pogorelov
TI  - Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2022
SP  - 339
EP  - 354
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/
LA  - ru
ID  - VSGTU_2022_26_2_a7
ER  - 
%0 Journal Article
%A E. V. Solomin
%A A. A. Terekhin
%A A. S. Martyanov
%A A. A. Kovalyov
%A D. R. Ismagilov
%A G. N. Ryavkin
%A A. Z. Kulganatov
%A B. T. Pogorelov
%T Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2022
%P 339-354
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/
%G ru
%F VSGTU_2022_26_2_a7
E. V. Solomin; A. A. Terekhin; A. S. Martyanov; A. A. Kovalyov; D. R. Ismagilov; G. N. Ryavkin; A. Z. Kulganatov; B. T. Pogorelov. Evaluation of influence of turbulence models on the vortex formation processes modeling in wind power. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 339-354. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a7/

[1] Ahmadi M. H. B., Yang Z., “The evolution of turbulence characteristics in the wake of a horizontal axis tidal stream turbine”, Renewable Energy, 151 (2020), 1008–1015 | DOI

[2] Posa A., Broglia R., Balaras E., “Instability of the tip vortices shed by an axial-flow turbine in uniform flow”, J. Fluid Mech., 920 (2021), 920A19-1 | DOI

[3] Wilcox D. C., Turbulence Modeling for CFD, DCW Industries, California, 1994, 460 pp.

[4] Menter F. R., “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA J., 32:8 (1994), 1598–1605 | DOI

[5] Chung T. J., Computational Fluid Dynamics, Cambridge Univ. Press, London, 2010, xxii+1034 pp. | DOI | Zbl

[6] Versteeg H., Malalasekra W., An Introduction to Computational Fluid Dynamics. The Finite Volume Method, Prentice Hall, London, 2007, xiii+503 pp.

[7] Ferziger J. H., Peric M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002, xiv+426 pp. | DOI | Zbl

[8] ANSYS® CFX – Solver Theory Guide, Release 16.0, Ansys ANSYS, Inc., Canonsburg, PA, 2016

[9] Anderson J. D., Computional Fluid Dynamics: The Basics with Applications, McGraw-Hill Series in Aeronautical and Aerospace Engineering, Mcgraw-Hill, Inc., New York, 1995, xxv+547 pp.

[10] Wesseling P., Principles of Computational Fluid Dynamics, Springer Series in Computational Mathematics, 29, Springer-Verlag, Berlin, Heidelberg, 2001, xii+644 pp. | DOI

[11] Belov I. A., Modelirovanie turbulentnykh techenii [Simulation of Turbulent Flows], Baltic State Techn. Univ., St. Petersburg, 2001, 108 pp. (In Russian)

[12] El Tahry S. H., “$k{-}\epsilon$ equation for compressible reciprocating engine flows”, J. Energy, 7:4 (1983), 345–353 | DOI

[13] Troshko A. A, Hassan Y. A., “A two-equation turbulence model of turbulent bubbly flows”, Int. J. Multiphase Flow, 27:11 (2001), 1965–2000 | DOI | Zbl

[14] Menter F. R., Eddy viscosity transport equations and their relation to the $k{-}\varepsilon$ model, NASA Technical Memorandum 108854, 1994

[15] Menter F. R., “Eddy viscosity transport equations and their relation to the $k{-}\varepsilon$ model”, J. Fluids Eng., 119:4 (1997), 876–884 | DOI

[16] Ansys Fluent 12.0 Theory Guide – 4.5.2 Shear-Stress Transport (SST) $k{-}{\omega}$ Model, Technical Documentation, 2009 https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm

[17] Snegirev A. Yu., Vysokoproizvoditel'nye vychisleniia v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii [Computer-Intensive Simulations in Technical Physics. Modeling and Simulations of Turbulent Flows], Politechn. Univ., St. Petersburg, 2009, 143 pp. (In Russian)

[18] Wind power plant Siemens: SWT–3.6–120, Technical documentation, 2021 https://pdf.archiexpo.com/pdf/siemens-gamesa/swt-36-120/88089-134487.html

[19] Solomin E. V., Terekhin A. A., Martyanov A. S., Kovalyov A. A., Ismagilov D. R., Miroshnichenko A. A., Yang Yu., Ryavkin G. N., “Horizontal-axis wind turbine weathervane yaw differential error”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 365–380 (In Russian) | DOI | Zbl

[20] Bogdanov S. N., Burtsev S. I., Ivanov O. P., Kupriianova A. V., Kholodil'naia tekhnika. Konditsionirovanie vozdukha [Refrigeration Equipment. Air Conditioning], SPbGAKhPT, St. Petersburg, 1999, 320 pp. (In Russian)

[21] Roshko A., On the development of turbulent wakes from vortex streets, Technical Report no. 1191, National Advisory Committee for Aeronautics, Washington, D.C., 1954, 25 pp. https://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191

[22] Shlikhting G., Boundary-Layer Theory, Springer-Verlag, Berlin, Heidelberg, 2000, xxiii+799 pp. | DOI