Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2022_26_2_a2, author = {R. A. Kirzhinov}, title = {Dezin problem analog for a parabolic-hyperbolic type equation with periodicity condition}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {259--272}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a2/} }
TY - JOUR AU - R. A. Kirzhinov TI - Dezin problem analog for a parabolic-hyperbolic type equation with periodicity condition JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2022 SP - 259 EP - 272 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a2/ LA - ru ID - VSGTU_2022_26_2_a2 ER -
%0 Journal Article %A R. A. Kirzhinov %T Dezin problem analog for a parabolic-hyperbolic type equation with periodicity condition %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2022 %P 259-272 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a2/ %G ru %F VSGTU_2022_26_2_a2
R. A. Kirzhinov. Dezin problem analog for a parabolic-hyperbolic type equation with periodicity condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 26 (2022) no. 2, pp. 259-272. http://geodesic.mathdoc.fr/item/VSGTU_2022_26_2_a2/
[1] Dezin A. A., “The simplest solvable extensions of ultrahyperbolic and pseudoparabolic operators”, Sov. Math., Dokl., 4 (1963), 208–211 | MR | Zbl
[2] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations], Nauka, Moscow, 2006, 287 pp. (in Russian) | Zbl
[3] Nakhusheva Z. A., “On a nonlocal problem of A. A. Dezin for the Lavrent'ev–Bitsadze equation”, Differ. Equat., 45:8 (2009), 1223–1228 | DOI | MR
[4] Sabitov K. B., “Dezin problem for an equation of the mixed type with a power-law degeneracy”, Differ. Equat., 55:10 (2019), 1384–1389 | DOI | DOI
[5] Sabitov K. B., Novikova V. A., “Nonlocal Dezin's problem for Lavrent'ev–Bitsadze equation”, Russian Math. (Iz. VUZ), 60:6 (2016), 52–62 | DOI
[6] Sabitov K. B., Gushchina V. A., “Dezin's problem for inhomogeneous Lavrent'ev–Bitsadze equation”, Russian Math. (Iz. VUZ), 61:3 (2017), 31–43 | DOI
[7] Gushchina V. A., “The nonlocal A. A. Desin's problem for an equation of mixed elliptic-hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 22–32 (In Russian) | DOI | Zbl
[8] Nakhusheva Z. A., Nelokal'nye kraevye zadachi dlia osnovnykh i smeshannogo tipov differentsial'nykh uravnenii [Nonlocal Boundary-Value Problems for Basic and Mixed Types of Differential Equations], KBNTs RAN, Nalchik, 2012, 196 pp. (in Russian)
[9] Sabitov K. B., “Dirichlet problem for mixed-type equations in a rectangular domain”, Dokl. Math., 75:1 (2007), 193–196 | DOI | MR
[10] Chandrasekharan K., Introduction to Analytic Number Theory, Grundlehren der mathematischen Wissenschaften, 148, Springer-Verlag, Berlin, Heidelberg, 1968, viii+144 pp. | DOI | Zbl
[11] Budak B. M., Fomin S. V., Multiple integrals, field theory and series. An advanced course in higher mathematics, Mir Publ., Moscow, 1973, 640 pp. | Zbl
[12] Fichtenholz G. M., Differential- und Integralrechnung. II [Differential and integral calculus. II], Hochschulbücher für Mathematik [University Books for Mathematics], 62, VEB Deutscher Verlag der Wissenschaften, Berlin, 1986, 836 pp. (In German) | Zbl