On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 776-786.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problems of ordering the reper orientations for a micropolar continuum immersed in an external plane space. Based on the concept of an elementary tensor volume (area) \(M\)-cells, an algorithm for comparing and matching external spatial orientations of \(M\)-cells is proposed. The process of continuous transfer of reper directions associated with a \(M\)-cell is considered. As a result, we can talk about the orientation of micropolar continuum itself and its boundary. The oriented continuum plays an important role in micropolar elasticity. This is especially true for the theory of hemitropic elastic media. The pseudotensor formulation of Stokes' theorem is discussed.
Keywords: relative tensor, orienting pseudoscalar, displacement, micropolar hemitropic continuum.
Mots-clés : microrotation
@article{VSGTU_2021_25_4_a9,
     author = {E. V. Murashkin and Yu. N. Radayev},
     title = {On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {776--786},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a9/}
}
TY  - JOUR
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 776
EP  - 786
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a9/
LA  - ru
ID  - VSGTU_2021_25_4_a9
ER  - 
%0 Journal Article
%A E. V. Murashkin
%A Yu. N. Radayev
%T On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 776-786
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a9/
%G ru
%F VSGTU_2021_25_4_a9
E. V. Murashkin; Yu. N. Radayev. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 776-786. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a9/

[1] Eisenhart L. P., Riemannian Geometry, Princeton Univ., Princeton, N.J., 1967, vii+306 pp. | Zbl

[2] Raschewski P. K., Riemannsche Geometrie und Tensoranalysis [Riemannian Geometry and Tensor Analysis], Verlag Harri Deutsch, Frankfurt am Main, 1995, 606 pp. (In German) | Zbl | Zbl

[3] Murashkin E. V., Radayev Yu. N., “On a micropolar theory of growing solids”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 424–444 | DOI | Zbl

[4] Murashkin E. V., Radayev Y. N., “On a differential constraint in asymmetric theories of the mechanics of growing solids”, Mech. Solids, 54:8 (2019), 1157–1164 | DOI

[5] Veblen O., Thomas T. Y., “Extensions of relative tensors”, Trans. Amer. Math. Soc., 26:3 (1924), 373–377 | DOI | Zbl

[6] Veblen O., Invariants of Quadratic Differential Forms, Cambridge Tracts in Mathematics and Mathematical Physics, 24, Cambridge Univ. Press, Cambridge, 1927, viii+102 pp. | Zbl

[7] Gurevich G. B., Foundations of the Theory of Algebraic Invariants, P. Noordhoff, Groningen, 1964, viii+429 pp. | Zbl

[8] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory, Encyclopedia of Physics, III/1, ed. S. Flügge, Springer, Berlin, Göttingen, Heidelberg, 1960, 226–902 | DOI

[9] Schouten J. A., Tensor Analysis for Physicists, Clarendon Press, Oxford, 1954, xii+277 pp. | Zbl

[10] Sokolnikoff I. S., Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua, Applied Mathematics Series, John Wiley Sons Inc, New York, 1964, xii+361 pp. | Zbl

[11] Synge J. L., Schild A., Tensor Calculus, Dover Books on Advanced Mathematics, 5, Courier Corporation, New York, 1978, ix+324 pp.

[12] Rozenfel'd B. A., Mnogomernye prostranstva [Multidimensional Spaces], Nauka, Moscow, 1966, 648 pp. (In Russian) | Zbl

[13] Kovalev V. A., Murashkin E. V., Radayev Yu. N., “On the Neuber theory of micropolar elasticity. A pseudotensor formulation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020), 752–761 | DOI | Zbl

[14] Radayev Yu. N., Murashkin E. V., “Pseudotensor formulation of the mechanics of hemitropic micropolar media”, Problems of Strength and Plasticity, 82:4 (2020), 399–412 (In Russian) | DOI

[15] Radayev Yu. N., Murashkin E. V., “A generalization of the algebraic theory of Hamilton–Cayley”, Mech. Solids, 56:6 (2021) | DOI

[16] Murashkin E. V., Radayev Yu. N., “On a pseudotensor generalization of the Hugoniot-Hadamard linking boundary conditions”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 2(48), 104–114 (In Russian) | DOI

[17] Murashkin E. V., Radayev Yu. N., “Direct, inverse and mirror wave modes of coupled displacements and microrotations monochromatic plane waves in hemitropic micropolar media”, Vestn. I. Yakovlev Chuvach State Pedagogical Univ. Ser. Mechanics of a Limit State, 2021, no. 2(48), 115–127 (In Russian) | DOI

[18] Radayev Yu. N., Murashkin E. V., “On the theory of oriented tensor elements of the area of a micropolar continuum immersed in an external flat space”, Mech. Solids, 57:2 (2022)

[19] Nowacki W., Theory of Micropolar Elasticity. Course held at the Department for Mechanics of Deformable Bodies, July 1970, Udine, International Centre for Mechanical Sciences. Courses and Lectures, 25, Springer, Wien, New York, 1972, 286 pp | DOI | Zbl

[20] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, viii+383 pp. | Zbl

[21] Besdo D., “Ein Beitrag zur nichtlinearen Theorie des Cosserat–Kontinuums [A contribution to the nonlinear theory of the Cosserat–continuum]”, Acta Mechanica, 20:1 (1974), 105–131 (In German) | DOI | Zbl

[22] Shilov G. E., An Introduction to the Theory of Linear Spaces, Dover Books on Advanced Mathematics, Dover Publ., New York, 1974, ix+310 pp. | Zbl | Zbl

[23] Sushkevich A. K., Osnovy vysshei algebry [Fundamentals of Higher Algebra], ONTI, Moscow, 1937, 476 pp. (In Russian)

[24] Lagally M., Vorlesungen über Vektor-Rechnung [Vector Calculus], Akademische Verlagsgesellschaft, Leipzig, 1928, xvii+358 pp. (In German) | Zbl

[25] Dubrovin B. A., Novikov S. P., Fomenko A. L., Sovremennaia geometriia [Modern Geometry], Nauka, Moscow, 1979, 760 pp. (In Russian)