Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_4_a5, author = {S. V. Firsov}, title = {Plastic and creep deformations of thick-walled cylinder with a rigid casing under internal pressure}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {696--715}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a5/} }
TY - JOUR AU - S. V. Firsov TI - Plastic and creep deformations of thick-walled cylinder with a rigid casing under internal pressure JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 696 EP - 715 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a5/ LA - ru ID - VSGTU_2021_25_4_a5 ER -
%0 Journal Article %A S. V. Firsov %T Plastic and creep deformations of thick-walled cylinder with a rigid casing under internal pressure %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 696-715 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a5/ %G ru %F VSGTU_2021_25_4_a5
S. V. Firsov. Plastic and creep deformations of thick-walled cylinder with a rigid casing under internal pressure. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 696-715. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a5/
[1] Nadai A., Plasticity, McGraw Hill Book Comp., New York, London, 1931, 392 pp.
[2] Hill R., Lee E. H., Tupper S. J., “The theory of combined plastic and elastic deformation with particular reference to a thick tube under internal pressure”, Proc. R. Soc. Lond., Ser. A, 191:1026 (1947), 278–303 | DOI | Zbl
[3] Cook G., “The stresses in thick-walled cylinders of mild steel overstrained by internal pressure”, Proc. Inst. Mech. Eng., 126:1 (1934), 407–455 | DOI
[4] Allen D. N., Sopwith D. G., “The stresses and strains in a partly plastic thick tube under internal pressure and end-load”, Proc. R. Soc. Lond., Ser. A, 205:1080 (1951), 69–83 | DOI | Zbl
[5] Steele M. C., “Partially plastic thick-walled cylinder theory”, J. Appl. Mech., 19:2 (1952), 133–140 | DOI | Zbl
[6] Sokolovsky V. V., Teoriia plastichnosti [Theory of Plasticity], Vyssh. Shkola, Moscow, 1969, 608 pp. (In Russian)
[7] Chu S. C., Vasilakis J. D., “Inelastic behavior of thick-walled cylinders subjected to nonproportionate loading”, Exp. Mech., 13:3 (1973), 113–119 | DOI
[8] Gao X.-L., “An exact elasto-plastic solution for an open-ended thick-walled cylinder of a strain-hardening material”, Int. J. Pres. Ves. Pip., 52:1 (1992), 129–144 | DOI
[9] Chu S.-C., “A more rational approach to the problem of an elastoplastic thick-walled cylinder”, J. Franklin Inst., 294:1 (1972), 57–65 | DOI
[10] Gao X.-L., “An exact elasto-plastic solution for a closed-end thick-walled cylinder of elastic linear-hardening material with large strains”, Int. J. Pres. Ves. Pip., 56:3 (1993), 331–350 | DOI
[11] Durban D., “Large strain solution for pressurized elasto/plastic tubes”, J. Appl. Mech., 46:1 (1979), 228–330 | DOI
[12] Bonn R., Haupt P., “Exact solutions for large elastoplastic deformations of a thick-walled tube under internal pressure”, Int. J. Plast., 11:1 (1995), 99–118 | DOI | Zbl
[13] MacGregor C. W., Coffin L. F., Fisher J. C., “The plastic flow of thick-walled tubes with large strains”, J. Appl. Phys., 19:3 (1948), 291–297 | DOI
[14] Durban D., “Finite straining of pressurized compressible elasto-plastic tubes”, Int. J. Eng. Sci., 26:9 (1988), 939–950 | DOI | Zbl
[15] Durban D., Kubi M., “A general solution for the pressurized elastoplastic tube”, J. Appl. Mech., 59:1 (1992), 20–26 | DOI | Zbl
[16] Gao X.-L., “Elasto-plastic analysis of an internally pressurized thick-walled cylinder using a strain gradient plasticity theory”, Int. J. Solids Struct., 40:23 (2003), 6445–6455 | DOI | Zbl
[17] Darijani H., Kargarnovin M. H., Naghdabadi R., “Design of thick-walled cylindrical vessels under internal pressure based on elasto-plastic approach”, Mat. Des., 30:9 (2009), 3537–3544 | DOI
[18] Nejad M. Z., Alamzadeh N., Hadi A., “Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition”, Compos. B. Eng., 154 (2018), 410–422 | DOI
[19] Coffin L. F., Jr., Shepler P. R., Cherniak G. S., “Primary creep in the design of internal-pressure vessels”, J. Appl. Mech., 16:3 (1949), 229–241 | DOI
[20] Weir C. D., “The creep of thick tubes under internal pressure”, J. Appl. Mech., 24:3 (1957), 464–466 | DOI | Zbl
[21] Sankaranarayanan R., “Steady creep of circular cylindrical shells under combined lateral and axial pressures”, Int. J. Solids Struct., 5:1 (1969), 17–32 | DOI | Zbl
[22] Murakami S., Iwatsuki S., “Transient creep of circular cylindrical shells”, Int. J. Solids Struct., 11:11 (1969), 897–912 | DOI
[23] Murakami S., Iwatsuki S., “Steady-state creep of circular cylindrical shells”, Bull. JSME, 14:73 (1971), 615–623 | DOI
[24] Murakami S., Suzuki K., “On the creep analysis of pressurized circular cylindrical shells”, Int. J. Non-Linear Mech., 6:3 (1971), 377–392 | DOI | Zbl
[25] Murakami S., Tanaka E., “On the creep buckling of circular cylindrical shells”, Int. J. Mech. Sci., 18:4 (1976), 185–194 | DOI
[26] Pai D. H., “Steady-state creep analysis of thick-walled orthotropic cylinders”, Int. J. Mech. Sci., 9:6 (1967), 335–348 | DOI
[27] Bhatnagar N. S., Gupta S. K., “Analysis of thick-walled orthotropic cylinder in the theory of creep”, J. Phys. Soc. Japan, 27:6 (1969), 1655–1661 | DOI
[28] Bhatnagar N. S., Arya V. K., “Large strain creep analysis of thick-walled cylinders”, Int. J. Non-Linear Mech., 9:2 (1974), 127–140 | DOI | Zbl
[29] Sharma S., Sahni M., Kumar R., “Thermo creep transition of transversely isotropic thick-walled rotating cylinder under internal pressure”, Int. J. Contemp. Math. Sci., 5:11 (2010), 517–527 | Zbl
[30] Singh T., Gupta V. K., “Effect of anisotropy on steady state creep in functionally graded cylinder”, Compos. Struct., 93:2 (2011), 747–758 | DOI
[31] Altenbach H., Gorash Y., Naumenko K., “Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges”, Acta Mech., 195:1 (2008), 263–274 | DOI | Zbl
[32] Chen J. J., Tu S. T., Xuan F. Z., Wang Z. D., “Creep analysis for a functionally graded cylinder subjected to internal and external pressure”, J. Strain Anal. Eng. Des., 42:2 (2007), 69–77 | DOI
[33] You L. H., Ou H., Zheng Z. Y., “Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure”, Compos. Struct., 78:2 (2007), 285–291 | DOI
[34] Jamian S., Sato H., Tsukamoto H., Watanabe Y., “Creep analysis of functionally graded material thick-walled cylinder”, Appl. Mech. Mater., 315 (2013), 867–871 | DOI
[35] Loghman A., Ghorbanpour Arani A., Amir S., Vajedi A., “Magnetothermoelastic creep analysis of functionally graded cylinders”, Int. J. Pres. Ves. Pip., 87:7 (2010), 389–395 | DOI
[36] Singh T., Gupta V. K., “Analysis of steady state creep in Whisker reinforced functionally graded thick cylinder subjected to internal pressure by considering residual stress”, Mech. Adv. Mater. Struct., 21:5 (2014), 384–392 | DOI
[37] Gupta S. K., Pathak S., “Thermo creep transition in a thick-walled circular cylinder under internal pressure”, Indian J. Pure Appl. Math., 32:2 (2001), 237–253 | Zbl
[38] Sharma S., Sahay I., Kumar R., “Creep transition in non homogeneous thick-walled circular cylinder under internal and external pressure”, Appl. Math. Sci., 6:122 (2012), 6075–6080 | Zbl
[39] Kovtanyuk L. V., Panchenko G. L., “On the changing mechanisms of the production of large irreversible deformations in the conditions of rectilinear motion in a cylindrical layer”, Mech. Solids, 55:2 (2020), 162–171 | DOI | DOI
[40] Galimzyanova K. N., Kovtanyuk L. V., Panchenko G. L., “Creep and plastic flow of a spherical viscoelastic layer material at its loading and unloading”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019), 270–283 (In Russian) | DOI | Zbl
[41] Begun A. S., Kovtanyuk L. V., Lemza A. O., “Creep and stress relaxation in the case of loading and unloading of a cylindrical layer with allowance for the development and deceleration of a viscoplastic flow”, J. Appl. Mech. Tech. Phys., 60:4 (2019), 748–757 | DOI | DOI | Zbl
[42] Burenin A. A., Kovtanyuk L. V., Panchenko G. L., “Creep and plastic flow of a material of a thick-walled cylindrical pipe under the action of uniform internal pressure”, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2020, no. 3 (45), 72–79 (In Russian) | DOI
[43] Firsov S. V., “Irreversible deformations of a rotating cylinder”, Izv. Altai State Univ., 102:4 (2018), 114–117 (In Russian) | DOI
[44] Firsov S. V., Prokudin A. N., “Creep and plastic flow in rotating hollow cylinder”, Bulletin of the Yakovlev Chuvash State Pedagogical University, Ser. Mechanics of Limit State, 2019, no. 4 (42), 45–55 (In Russian) | DOI
[45] Firsov S. V., Prokudin A. N., Burenin A. A., “Creep and plastic flow in a rotating cylinder with a rigid inclusion”, J. Appl. Ind. Math., 13:4 (2019), 642–652 | DOI | DOI
[46] Banshchikova I. A., Gorev B. V., Sukhorukov I. V., “Two-dimensional problems of beam forming under conditions of creep”, J. Appl. Mech. Tech. Phys., 43:3 (2002), 448–456 | DOI | Zbl
[47] Kuznetsov E. B., Leonov S. S., “Technique for selecting the functions of the constitutive equations of creep and long-term strength with one scalar damage parameter”, J. Appl. Mech. Tech. Phys., 57:2 (2016), 369–377 | DOI | DOI
[48] Burenin A. A., Tkacheva V. E., “Assembly of a two-layered metal pipe by using shrink fit”, Mech. Solids, 54:4 (2019), 559–569 | DOI | DOI
[49] Rabotnov Yu. N., Creep Problems in Structural Members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl
[50] Norton F. H., The Creep of Steel at High Temperatures, Classic Reprint Series, Forgotten Books, London, 2017, 102 pp.