Creep and long-term fracture of a narrow rectangular membrane
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 676-695.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we studied the creep and long-term fracture of a narrow rectangular membrane in confined conditions (inside a high rigid matrix) with a proportional dependence on the magnitude of transverse pressure on time. Deformation of the membrane is considered as a sequence of three stages. At first stage, the membrane is deformed under free conditions until it touches the longitudinal sides of the rigid matrix. At second stage, the membrane is deformed when it touches the longitudinal walls of matrix until it touches its transverse wall. At third stage, the membrane is already deformed while simultaneously touching the longitudinal and transverse walls of matrix. Membrane deformation occurs under creep conditions under two types of contact conditions: sliding of the membrane along the walls of matrix and adhesion of membrane to the walls of matrix. The dependence of the time until the fracture of membrane at different rates of increase in the magnitude of the transverse pressure is obtained. The analysis of the gradual long-term fracture of the membrane is carried out using the kinetic theory of creep by Yu. N. Rabotnov, while the parameter of material damage in this problem has a scalar character. The solution of the system consisting of constitutive and kinetic equations showed that during the membrane deformation at the first stage regardless of the type of contact conditions, the level of damage accumulates in the membrane, which is close to its limiting value. In this regard, the creep processes of the membrane at second and third stages of deformation under both considered types of contact conditions practically coincide. The obtained equations are used to analyze the creep and long-term fracture of a membrane made of 2.15Cr-1Mo steel, which is deformed under variable transverse pressure at a temperature of $600\,^\circ$C.
Mots-clés : rectangular membrane, rigid matrix, variable transverse pressure
Keywords: creep, long-term fracture, damage parameter, kinetic theory, long-term strength.
@article{VSGTU_2021_25_4_a4,
     author = {A. M. Lokoshchenko and L. V. Fomin and Yu. G. Basalov and P. M. Tretyakov},
     title = {Creep and long-term fracture of a narrow rectangular membrane},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {676--695},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a4/}
}
TY  - JOUR
AU  - A. M. Lokoshchenko
AU  - L. V. Fomin
AU  - Yu. G. Basalov
AU  - P. M. Tretyakov
TI  - Creep and long-term fracture of a narrow rectangular membrane
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 676
EP  - 695
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a4/
LA  - ru
ID  - VSGTU_2021_25_4_a4
ER  - 
%0 Journal Article
%A A. M. Lokoshchenko
%A L. V. Fomin
%A Yu. G. Basalov
%A P. M. Tretyakov
%T Creep and long-term fracture of a narrow rectangular membrane
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 676-695
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a4/
%G ru
%F VSGTU_2021_25_4_a4
A. M. Lokoshchenko; L. V. Fomin; Yu. G. Basalov; P. M. Tretyakov. Creep and long-term fracture of a narrow rectangular membrane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 676-695. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a4/

[1] Kachanov L. M., Osnovy mekhaniki razrusheniia [Fundamentals of Fracture Mechanics], Nauka, Moscow, 1974, 312 pp. (In Russian)

[2] Odqvist F. K. G., Mathematical theory of creep and creep rupture, Clarendon Press, Oxford, 1974, 200 pp. | Zbl

[3] Storåkers B., Finite Plastic Deformation of a Circular Membrane under Hydrostatic Pressure, Acta polytechnica Scandinavica. Mechanical engineering series, 44, Royal Swedish Acad. of Eng. Sci., Stocholm, 1969, 107 pp.

[4] Malinin N. N., Polzuchest' v obrabotke metallov [Creep in Metal Forming], Mashinostroenie, Moscow, 1986, 216 pp. (In Russian)

[5] Lokoshchenko A. M., Creep and Long-term Strength of Metals, CRC Press, Boca, Raton, 2018, xviii+545 pp. | DOI

[6] Lokoshchenko A. M., Teraud W. V., Shevarova E. A., “The steady-state creep of long membrane in a rigid matrix at a variable transverse pressure”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 445–468 (In Russian) | DOI

[7] Lokoshchenko A. M., Fomin L. V., Basalov Yu. G., “Steady-state creep of a long narrow membrane inside a high rigid matrix at variable transverse pressure” (August, 2021), Proceeding of the 7$^{th}$ World Congress on Mechanical, Chemical and Material Engeneering (MCM'21), 2021, ICMIE 123 | DOI

[8] Efimov A. B., Romanyuk S. N., Chumachenko E. N., “On the determination of the regularities of friction in the processes of metal forming by pressure”, Mec. Solids, 1995, no. 6, 82–98 (In Russian)

[9] Kachanov L. M., “Time of the rupture process under creep conditions”, Izv. Akad. Nauk SSSR, Otd. Techn. Nauk, 1958, no. 8, 26–36 (In Russian) | Zbl

[10] Rabotnov Yu. N., “Mechanism of long-term destruction”, Strength of Materials and Structures, USSR Academy of Sciences, Moscow, 1959, 5–7 (In Russian)

[11] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[12] Rabotnov Yu. N., “On fracture as a consequence of creep”, Prikl. Mekh. Tekh. Fiz., 1963, no. 2, 113–123 (In Russian) | Zbl

[13] Goyal S., Laha K., Panneer Selvi S., Mathew M. D., “Mechanistic approach for prediction of creep deformation, damage and rupture life of different Cr–Mo ferritic steels”, Materials at High Temperatures, 31:3 (2014), 211–220 | DOI