Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_4_a0, author = {I. F. Hashimoglu}, title = {Asymptotics of the eigenvalues of a boundary value problem~for the operator {Schr\"{o}dinger} equation with~boundary conditions nonlinearly dependent on~the~spectral parameter}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {607--615}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a0/} }
TY - JOUR AU - I. F. Hashimoglu TI - Asymptotics of the eigenvalues of a boundary value problem~for the operator Schr\"{o}dinger equation with~boundary conditions nonlinearly dependent on~the~spectral parameter JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 607 EP - 615 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a0/ LA - en ID - VSGTU_2021_25_4_a0 ER -
%0 Journal Article %A I. F. Hashimoglu %T Asymptotics of the eigenvalues of a boundary value problem~for the operator Schr\"{o}dinger equation with~boundary conditions nonlinearly dependent on~the~spectral parameter %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 607-615 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a0/ %G en %F VSGTU_2021_25_4_a0
I. F. Hashimoglu. Asymptotics of the eigenvalues of a boundary value problem~for the operator Schr\"{o}dinger equation with~boundary conditions nonlinearly dependent on~the~spectral parameter. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 4, pp. 607-615. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_4_a0/
[1] Hashimoglu I., Ak{\i}n Ö., Mamedov K. R., “The discreteness of the spectrum of the Schrödinger operator equation and some properties of the s-numbers of the inverse Schrödinger operator”, Math. Methods Appl. Sci., 42:7 (2019), 2231–2243 | DOI | Zbl
[2] Gorbachuk V. I., Rybak M. A., “On the boundary-value problems for the Sturm–Liouville equation with a spectral parameter in the equation and boundary condition”, Direct and Inverse Problems of the Scattering Theory, Kiev, 1981, 3–16 (In Russian) | Zbl
[3] Rybak M. A., “Asymptotic distribution of the eigenvalues of some boundary value problems for Sturm–Liouville operator equations”, Ukr. Math. J., 32:2 (1980), 159–162 | DOI | Zbl
[4] Aliev B. A., “Asymptotic behavior of the eigenvalues of a boundary-value problem for a second-order elliptic operator-differential equation”, Ukr. Math. J., 58:8 (2006), 1298–1306 | DOI | Zbl
[5] Aliev B. A., “Asymptotic behavior of eigenvalues of a boundary value problem for a second-order elliptic differential-operator equation with spectral parameter quadratically occurring in the boundary condition”, Diff. Equ., 54:9 (2018), 1256–1260 | DOI | Zbl
[6] Aliev B. A., “On eigenvalues of a boundary value problem for a second order elliptic differential-operator equation”, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb., 45:2 (2019), 213–221 | DOI | Zbl
[7] Kapustin N. Yu., “On a spectral problem in the theory of the heat operator”, Diff. Equ., 45:10 (2009), 1509–1511 | DOI | Zbl
[8] Kapustin N. Yu., “On the uniform convergence in $C^1$ of Fourier series for a spectral problem with squared spectral parameter in a boundary condition”, Diff. Equ., 47:10 (2011), 1408–1413 | DOI | Zbl
[9] Kerimov N. B., Mamedov Kh. R., “On one boundary value problem with a spectral parameter in the boundary conditions”, Sib. Math. J., 40:2 (1999), 281–290 | DOI | Zbl
[10] Aslanova N. M., “Study of the asymptotic eigenvalue distribution and trace formula of a second order operator-differential equation”, Bound. Value Probl., 2011:7 (2011), 1–22 | DOI