Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_3_a4, author = {V. B. Penkov and L. Levina and E. A. Novikov}, title = {Rigorous solution of the problem of the state of a linearly elastic isotropic body under the action of polynomial bulk~forces}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {475--490}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a4/} }
TY - JOUR AU - V. B. Penkov AU - L. Levina AU - E. A. Novikov TI - Rigorous solution of the problem of the state of a linearly elastic isotropic body under the action of polynomial bulk~forces JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 475 EP - 490 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a4/ LA - ru ID - VSGTU_2021_25_3_a4 ER -
%0 Journal Article %A V. B. Penkov %A L. Levina %A E. A. Novikov %T Rigorous solution of the problem of the state of a linearly elastic isotropic body under the action of polynomial bulk~forces %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 475-490 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a4/ %G ru %F VSGTU_2021_25_3_a4
V. B. Penkov; L. Levina; E. A. Novikov. Rigorous solution of the problem of the state of a linearly elastic isotropic body under the action of polynomial bulk~forces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 3, pp. 475-490. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_3_a4/
[1] Truesdell C., A First Course in Rational Continuum Mechanics. Vol. 1: General Concepts, Pure and Applied Mathematics, 71, Academic Press, New York, San Francisco, London, 1977, xxiii+280 pp. | Zbl
[2] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a Deformable Rigid Body], Nauka, Moscow, 1988, 712 pp. (In Russian) | Zbl
[3] Lurie A. I., Theory of Elasticity, Foundations of Engineering Mechanics, Springer-Verlag, Berlin, 2005, iv+1050 pp. | DOI | Zbl
[4] Muskhelishvili N. I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti [Some Basic Problems of the Mathematical Theory of Elasticity], Nauka, Moscow, 1966, 707 pp. (In Russian) | MR | Zbl
[5] Green A. E., Zerna W., Theoretical Elasticity, Dover Publications, New York, 1992, xvi+457 pp. | Zbl
[6] Arfken G. B., Weber H. J., Mathematical Methods for Physicists, Elsiver/Academic Press, Amsterdam, 2005, xii+1182 pp. | Zbl
[7] Neuber H., “Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel”, ZAMM, 14:4 (1934), 203–212 | DOI | Zbl
[8] Matveenko V. P., Schevelev N. A., “Analytical study of the stress-strain state of rotation bodies under the action of mass forces”, Stress-Strain State of Structures Made of Elastic and Viscoelastic Materials, Sverdlovsk, 1977, 54–60 (In Russian)
[9] Vestyak V. A., Tarlakovsky D. V., “Unsteady axisymmetric deformation of an elastic space with a spherical cavity under the action of bulk forces”, Moscow Univ. Mech. Bull., 71:4 (2016), 87–92 | DOI | Zbl
[10] Sharafutdinov G. Z., “Functions of a complex variable in problems in the theory of elasticity with mass forces”, J. Appl. Math. Mech., 73:1 (2009), 69–87 | DOI | Zbl
[11] Zaytsev A. V, Fukalov A. A., “Exact analytical solutions of equilibrium problems for elastic anisotropic bodies with central and axial symmetry, which are in the field of gravitational forces, and their applications to the problems of geomechanics”, Matemat. Model. Estestv. Nauk., 1 (2015), 141–144 (In Russian)
[12] Pikul V. V., “To anomalous deformation of solids”, Physical Mesomechanics, 2013, no. 2, 93–100 (In Russian)
[13] Kozlov V. V., “The Lorentz force and its generalizations”, Nelin. Dinam., 7:3 (2011), 627–634 (In Russian)
[14] Satalkina L. V., The method of boundary states in problems of the theory of elasticity of inhomogeneous bodies and thermoelasticity, Thesis of Dissertation (Cand. Phys. Math. Sci.), Lipetsk, 2010, 108 pp. (In Russian)
[15] Penkov V. B., Novikov E. A., Novikova O. S., Levina L. V., “Combining the method of boundary states and the Lindstedt–Poincaré method in geometrically nonlinear elastostatics”, J. Phys.: Conf. Ser., 1479 (2020), 012135 | DOI
[16] Ivanychev D. A., Novikov E. A., “The solution of physically nonlinear problems for isotropic bodies by the method of boundary states”, Problems of Strength, Plasticity, and Stability in Solid Mechanics, Tver State Techn. Univ., Tver, 2021, 43–47 (In Russian)
[17] Penkov V. B., Ivanychev D. A., Levina L. V., Novikov E. A., “Using the method of boundary states with perturbations to solve physically nonlinear problems of the theory of elasticity”, J. Phys.: Conf. Ser., 1479 (2020), 012134 | DOI
[18] Kuzmenko V. I., Kuzmenko N. V., Levina L. V., Penkov V. B., “A method for solving problems of the isotropic elasticity theory with bulk forces in polynomial representation”, Mech. Solids, 54:5 (2019), 741–749 | DOI | DOI | Zbl
[19] Penkov V. B., Levina L. V., Novikova O. S., “Analytical solution of elastostatic problems of a simply connected body loaded with nonconservative volume forces: theoretical and algorithmic support”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:1 (2020), 56–73 (In Russian) | DOI | Zbl
[20] Ivanychev D. A., “A boundary state method for solving a mixed problem of the theory of anisotropic elasticity with mass forces”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71, 63–77 (In Russian) | DOI
[21] Penkov V.B., Rybakova M. R., Satalkina L. V., “Application of the Schwarz algorithm to spatial problems of elasticity theory”, Vesti Vuzov Chernozemya, 2015, no. 2 (40), 23–31 (In Russian)