Mathematical modeling and noise-proof estimation of~shock~wave pulse parameters based
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 127-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the construction of a mathematical model of the underwater shock wave pulse based on the results of the experiment and numerical and analytical scientific research. The results of the development and comparative analysis of various numerical methods for nonlinear estimation of the parameters of this model are presented. A numerical method is proposed for estimating the pulse energy of a shock wave based on the experimental results in the form of an overpressure waveform both over an infinite period of time and at a given pulse duration. The results of testing the developed numerical methods for mathematical modeling of the underwater shock wave pulse when processing the results of the experiment at the explosion of model charge are presented. The reliability and efficiency of the computational algorithms and numerical methods of nonlinear estimation presented in this paper is confirmed by the results of numerical and analytical studies and mathematical models constructed on the basis of experimental data.
Keywords: underwater shock wave pulse, mathematical model, nonlinear regression analysis, generalized regression model, root-mean-square estimation, statistical processing of experimental results.
@article{VSGTU_2021_25_1_a8,
     author = {V. E. Zoteev and S. Yu. Ganigin and D. A. Demoretskii and M. V. Nenashev and A. V. Gubinsky},
     title = {Mathematical modeling and noise-proof estimation of~shock~wave pulse parameters based},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {127--162},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a8/}
}
TY  - JOUR
AU  - V. E. Zoteev
AU  - S. Yu. Ganigin
AU  - D. A. Demoretskii
AU  - M. V. Nenashev
AU  - A. V. Gubinsky
TI  - Mathematical modeling and noise-proof estimation of~shock~wave pulse parameters based
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 127
EP  - 162
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a8/
LA  - ru
ID  - VSGTU_2021_25_1_a8
ER  - 
%0 Journal Article
%A V. E. Zoteev
%A S. Yu. Ganigin
%A D. A. Demoretskii
%A M. V. Nenashev
%A A. V. Gubinsky
%T Mathematical modeling and noise-proof estimation of~shock~wave pulse parameters based
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 127-162
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a8/
%G ru
%F VSGTU_2021_25_1_a8
V. E. Zoteev; S. Yu. Ganigin; D. A. Demoretskii; M. V. Nenashev; A. V. Gubinsky. Mathematical modeling and noise-proof estimation of~shock~wave pulse parameters based. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 127-162. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a8/

[1] A-man Z., Wen-shan Y., Xiong-liang Y., “Numerical simulation of underwater contact explosion”, Applied Ocean Research, 34 (2012), 10–20 | DOI

[2] Zong Z., Zhao Y., Li H., “A numerical study of whole ship structural damage resulting from close-in underwater explosion shock”, Marine Structures, 31 (2013), 24–43 | DOI

[3] Zhang N., Zong Z., “Hydro-elastic-plastic dynamic response of a ship hull girder subjected to an underwater bubble”, Marine Structures, 29:1 (2012), 177–197 | DOI

[4] Cole R. H., Underwater explosions, Princeton Univ. Press, Princeton, 1948, 437 pp.

[5] Song F., Guo-ning, Jin-hua P., “Experimental Study and Numerical Simulation of CL-20-Based Aluminized Explosive in Underwater Explosion Hanneng Cailiao”, Chinese J. Energetic Materials, 26:8 (2018), 686–695 | DOI

[6] Kowsarinia E., Alizadeh Y., Salavati pour H. S., “Experimental evaluation of blast wave parameters in underwater explosion of hexogen charges”, Int. J. Eng., 25:1(B) (2012), 63–70 | DOI

[7] Lawrence G. W., “Shock wave pressure in free water as a function of explosive composition”, 12th International Detonation Symposium (San Diego, California, August 11–16, 2002), 2002 Retrieved from (March 29, 2021) http://www.intdetsymp.org/detsymp2002/PaperSubmit/FinalManuscript/pdf/Lawrence-221.pdf

[8] Moon S.-J., Kwon J.-I, Park J.-W., Chung J.-H., “Assessment on shock pressure acquisition from underwater explosion using uncertainty of measurement”, Int. J. Nav. Archit. Ocean Eng., 9:6 (2017), 589–597 | DOI

[9] Kedrinskiy V. K., Hydrodynamics of Explosion. Experiment and Models, Springer, Berlin, 2005, xii+362 pp. | DOI

[10] “Application of polyvinylidene fluoride for pressure measurements in an underwater explosion of aluminized explosives”, Combust. Explos. Shock Waves, 51:3 (2015), 381–386 | DOI | DOI

[11] Wedberg R., “Using underwater explosion and cylinder expansion tests to calibrate afterburn models for aluminized explosives”, AIP Conf. Proc., 1979 (2018), 150040 | DOI

[12] Huang C., Liu M., Wang B., Zhang Y., “Underwater explosion of slender explosives: Directional effects of shock waves and structure responses”, Int. J. Impact Eng., 130 (2019), 266–280 | DOI

[13] De Candia S. M., Ojeda R., Reid W., Ratcliffe M., Binns J., “The whipping response of a submerged free-free cylinder due to underwater explosions”, Proc. of the Pacific 2017 International Maritime Conference, Australia, Sydney, October 3–5, 2017, 2017 Retrieved from (March 29, 2021) https://eprints.utas.edu.au/31578/

[14] Park I.-K., Kim J.-C., An C.-W., Cho D.-S., “Measurement of naval ship responses to underwater explosion shock loadings”, Shock and Vibration, 10 (2003), 803475, 365–377 | DOI

[15] Murata K., Takahashi K., Kato Y., “Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer”, J. Mater. Process. Technol., 85:1–3 (1999), 39–42 | DOI

[16] Ozeretskovskii O. I., Deistvie vzryva na podvodnye ob"ekty [The Effect of an Explosion on Underwater Objects], ed. E. S. Shakhidzhanova, Central Scientific Research Institute of Chemistry and Mechanics, Moscow, 2007, 262 pp. (In Russian)

[17] Geetha M., Nair U. R., Sarwade D. B., Gore G. M., Asthana S. N., Singh H., “Studies on CL-20: The most powerful high energy material”, J. Therm. Anal. Calor., 73:3 (2003), 913–922 | DOI

[18] Panovko Ya. G., Osnovy prikladnoi teorii kolebanii i udara [Fundamentals of Applied Theory of Vibrations and Shock], Mashinostroenie, Leningrad, 1976, 320 pp. (In Russian)

[19] Granovskii V. A., Siraya T. N., Metody obrabotki eksperimental'nykh dannykh pri izmereniiakh [Methods of processing experimental data in measurements], Energoatomizdat, Leningrad, 1990, 288 pp. (In Russian)

[20] Draper N. R., Smith H., “Applied Regression Analysis”, Wiley Series in Probability and Statistics, John Wiley Sons, New York, 1998, xix+716 | DOI | MR

[21] Demidenko E. Z., Lineinaia i nelineinaia regressii [Linear and Nonlinear Regressions], Finance and Statistics, Moscow, 1981, 302 pp. (In Russian) | MR

[22] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., 11:2 (1963), 431–441 | DOI | MR | Zbl

[23] Hartley H. O., Booker A., “Nonlinear least squares estimation”, Ann. Math. Statist., 36:2 (1965), 638–650 | DOI | MR | Zbl

[24] Seber G. A. F., Lee A. J., Linear Regression Analysis, Wiley Series in Probability and Statistics, Wiley, Hoboken, NJ, 2003, xvi+565 pp. | DOI | MR | MR | Zbl

[25] Vuchkov I., Boyadzhieva L., Solakov O., Prikladnoi lineinyi regressionnyi analiz [Applied Linear Regression Analysis], Finance and Statistics, Moscow, 1987, 238 pp. (In Russian) | MR

[26] Zoteev V. E., Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equations], Mashinostroenie, Moscow, 2009, 344 pp. (In Russian)

[27] Zoteev V. E., Stukalova E. D., Bashkinova E. V., “Numerical method of estimation of parameters of the nonlinear differential operator of the second order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:3 (2017), 556–580 (In Russian) | DOI | Zbl

[28] Zoteev V. E., “A numerical method of nonlinear estimation based on difference equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018), 669–701 (In Russian) | DOI | Zbl

[29] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniia [Matrixes and Computations], Nauka, Moscow, 1984, 320 pp. (In Russian) | MR