Unsteady bending function for an unlimited anisotropic plate
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 111-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the study of non-stationary vibrations of a thin anisotropic unbounded Kirchhoff plate under the influence of random non-stationary loads. The approach to the solution is based on the principle of superposition and the method of influence functions (the so-called Green functions), the essence of which is to link the desired solution to the load using an integral operator of the type of convolution over spatial variables and over time. The convolution core is the Green function for the anisotropic plate, which represents normal displacements in response to the impact of a single concentrated load in coordinates and time, mathematically described by the Dirac delta functions. Direct and inverse integral transformations of Laplace and Fourier are used to construct the Green function. The inverse integral Laplace transform is found analytically. The inverse two-dimensional integral Fourier transform is found numerically by integrating rapidly oscillating functions. The obtained fundamental solution allowed us to present the desired non-stationary deflection in the form of a triple convolution in spatial coordinates and time of the Green function with the non-stationary load function. The rectangle method is used to calculate the convolution integral and construct the desired solution. The found deflection function makes it possible to study the space-time propagation of non-stationary waves in an unbounded Kirchhoff plate for various versions of the symmetry of the elastic medium: anisotropic, orthotropic, transversally isotropic, and isotropic. Examples of calculations are presented.
Keywords: non-stationary dynamics, anisotropic material, Green function, non-stationary deflection, Kirchhoff plate, integral transforms, rectangle method, rapidly oscillating functions.
Mots-clés : quadrature formulas
@article{VSGTU_2021_25_1_a7,
     author = {A. O. Serdiuk and D. O. Serdyuk and G. V. Fedotenkov},
     title = {Unsteady bending function for an unlimited anisotropic plate},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {111--126},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a7/}
}
TY  - JOUR
AU  - A. O. Serdiuk
AU  - D. O. Serdyuk
AU  - G. V. Fedotenkov
TI  - Unsteady bending function for an unlimited anisotropic plate
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 111
EP  - 126
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a7/
LA  - ru
ID  - VSGTU_2021_25_1_a7
ER  - 
%0 Journal Article
%A A. O. Serdiuk
%A D. O. Serdyuk
%A G. V. Fedotenkov
%T Unsteady bending function for an unlimited anisotropic plate
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 111-126
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a7/
%G ru
%F VSGTU_2021_25_1_a7
A. O. Serdiuk; D. O. Serdyuk; G. V. Fedotenkov. Unsteady bending function for an unlimited anisotropic plate. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 111-126. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a7/

[1] Gorshkov A. G., Medvedskii A. L., Rabinskii L. N., Tarlakovskii D. V., Volny v sploshnykh sredakh [Waves in Continuous Media], Fizmatlit, Moscow, 2004, 472 pp. (In Russian)

[2] Morgachev K. S., “Non-stationary dynamics of Timoshenko circular plate of variable thickness”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, no. 2(15), 162–164 (In Russian) | DOI | Zbl

[3] Dyachenko Yu. G., The unsteady problem of variable section plate dynamics in a refined formulation, Thesis of Dissertation (Cand. Phys. Math. Sci.), Saratov State Univ., Saratov, 2008, 19 pp. (In Russian)

[4] Shevchenko V. P., Vetrov S. O., “The dynamics of an orthotropic plate under the action of local suddenly applied loads”, Trudy Inst. Prikl. Mat. Mekh., 22 (2011), 207–215 (In Russian) | Zbl

[5] Mikhailova E. Yu., Fedotenkov G. V., “Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction)”, Mech. Solids, 46:2 (2011), 239–247 | DOI

[6] Tarlakovskii D. V., Fedotenkov G. V., “Two-dimensional nonstationary contact of elastic cylindrical or spherical shells”, J. Mach. Manuf. Reliab., 43:2 (2014), 145–152 | DOI

[7] Tarlakovskii D. V., Fedotenkov G. V., “Nonstationary 3D motion of an elastic spherical shell”, Mech. Solids, 50:2 (2015), 208–217 | DOI

[8] Vestyak A. V., Igumnov L. A., Tarlakovskii D. V., Fedotenkov G. V., “Vozdeistvie nestatsionarnogo davleniya na tonkuyu sfericheskuyu obolochku s uprugim zapolnitelem”, Vychislitelnaya mekhanika sploshnykh sred, 9:4 (2016), 443–452 (In Russian) | DOI

[9] Fedotenkov G. V., Mikhailova E. Yu., Kuznetsova E. L., Rabinskiy L. N., “Modeling the unsteady contact of spherical shell made with applying the additive technologies with the perfectly rigid stamp”, Int. J. Pure Appl. Math., 111:2 (2016), 331–342 | DOI

[10] Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V., “Transient contact problem for spherical shell and elastic half-space”, Shell Structures: Theory and Applications, v. 4, CRC Press, London, 2017, 301–304 | DOI

[11] Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V., “The impact of liquid filled concentric spherical shells with a rigid wall”, Shell Structures: Theory and Applications, v. 4, CRC Press, London, 2017, 305–308 | DOI

[12] Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V., “Transient contact problem for liquid filled concentric spherical shells and a rigid barrier”, Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics, v. 5, Springer, Cham, 2019, 385–386 | DOI

[13] Fedotenkov G. V., Kalinchuk V. V., Mitin A. Y., “Three-Dimensional non-stationary motion of Timoshenko-type circular cylindrical shell”, Lobachevskii J. Math., 40:3 (2019), 311–320 | DOI | MR | Zbl

[14] Lokteva N. A., Serdyuk D. O., Skopintsev P. D., “Unsteady dynamics of thin anisotropic elastic cylindrical shells”, Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, v. 2, Moscow, 2020, 90–91 (In Russian)

[15] Okonechnikov A. S., Tarlakovski D. V., Ul'yashina A. N., Fedotenkov G. V., “Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance”, IOP Conf. Ser.: Mater. Sci. Eng., 158 (2016), 012073 | DOI

[16] Okonechnikov A. S., Tarlakovsky D. V., Fedotenkov G. V., “Transient interaction of rigid indenter with elastic half-plane with adhesive force”, Lobachevskii J. Math., 40:4 (2019), 489–498 | DOI | MR | Zbl

[17] Mikhailova E. Yu., Tarlakovskii D. V., Fedotenkov G. V., Uprugie plastiny i pologie obolochki [Elastic Plates and Shallow Shells], Moscow Aviation Inst., Moscow, 2018, 92 pp. (In Russian)

[18] Tarlakovskii D. V., Fedotenkov G. V., Obshchie sootnosheniia i variatsionnye printsipy matematicheskoi teorii uprugosti [General Relations and Variational Principles of the Mathematical Theory of Elasticity], MAI-Print, Moscow, 2009, 112 pp. (In Russian)

[19] Serdyuk A. O., Serdyuk D. O., Fedotenkov G. V., “Green's function for an unbounded thin anisotropic plate”, Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, v. 2, Moscow, 2020, 106–108 (In Russian)

[20] Serdyuk A. O., Serdyuk D. O., Fedotenkov G. V., “Influence function for a plate with arbitrary material anisotropy”, Dynamic and Technological Problems of Mechanics of Structures and Continuous Media, v. 2, Moscow, 2020, 108–110 (In Russian)

[21] Doetsch G., Introduction to the theory and application of the Laplace transformation, Springer Verlag, Berlin, 1974, vii+326 pp. | MR | Zbl

[22] Bakhvalov N. S., Zhidkov N. P., Kobel'kov G. M., Chislennye metody [Numerical Methods], Nauka, Moscow, 1975, 630 pp. (In Russian) | MR

[23] Ashkenazi E. K., Anizotropiya drevesiny i drevesnykh materialov, Lesn. prom., M., 1978, 224 \mistransl pp. (In Russian)