Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_1_a3, author = {K. B. Sabitov and O. V. Fadeeva}, title = {Initial-boundary value problem for the equation of forced vibrations of~a~cantilever beam}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {51--66}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a3/} }
TY - JOUR AU - K. B. Sabitov AU - O. V. Fadeeva TI - Initial-boundary value problem for the equation of forced vibrations of~a~cantilever beam JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 51 EP - 66 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a3/ LA - ru ID - VSGTU_2021_25_1_a3 ER -
%0 Journal Article %A K. B. Sabitov %A O. V. Fadeeva %T Initial-boundary value problem for the equation of forced vibrations of~a~cantilever beam %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 51-66 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a3/ %G ru %F VSGTU_2021_25_1_a3
K. B. Sabitov; O. V. Fadeeva. Initial-boundary value problem for the equation of forced vibrations of~a~cantilever beam. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 51-66. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a3/
[1] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1966, 724 pp. (In Russian) | MR
[2] Rayleigh L., Teoriia zvuka [The Theory of Sound], Gostehizdat, Moscow, 1955, 503 pp. (In Russian)
[3] Krylov A. N., Vibratsiia sudov [The Ship Vibration], Leningrad, Moscow, 1936, 442 pp. (In Russian)
[4] Collatts L., Zadachi na sobstvennye znacheniia s tekhnicheskimi prilozheniiami [The Eigenvalue Problem with Technical Applications], Nauka, Moscow, 1968, 503 pp. (In Russian)
[5] Biderman V. L., Teoriia mekhanicheskikh kolebanii [Theory of Mechanical Vibrations], Vyssh. shk., Moscow, 1980, 408 pp. (In Russian)
[6] Timoshenko S. P., Kolebaniia v inzhenernom dele [Fluctuations in Engineering], Fizmatlit, Moscow, 1967, 444 pp. (In Russian)
[7] Rudakov I. A., “Periodic solutions of the quasilinear beam vibration equation with homogeneous boundary conditions”, Differ. Equ., 48:6 (2012), 820–831 | DOI | MR | Zbl
[8] Li S., Reynders E., Maes K., De Roeck G., “Vibration-based estimation of axial force for abeam member with uncertain boundary conditions”, J. Sound Vibrat., 332:4 (2013), 795–806 | DOI
[9] Rudakov I. A., “Periodic solutions of the quasilinear equation of forced beam vibrations with homogeneous boundary conditions”, Izv. Math., 79:5 (2015), 1064–1086 | DOI | DOI | MR | Zbl
[10] Wang Y.-R., Fang Z.-W., “Vibrations in an elastic beam with nonlinear supports at both ends”, J. Appl. Mech. Tech. Phys., 56:2 (2015) | DOI | DOI | MR | MR
[11] Sabitov K. B., “Fluctuations of a beam with clamped ends”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 311–324 (In Russian) | DOI | Zbl
[12] Sabitov K. B., “A remark on the theory of initial-boundary value problems for the equation of rods and beams”, Differ. Equ., 53:1 (2017), 86–98 | DOI | DOI | MR | Zbl
[13] Sabitov K. B., “Cauchy problem for the beam vibration equation”, Differ. Equ., 53:5 (2017), 658–664 | DOI | DOI | MR | MR | Zbl
[14] Kasimov S. G., Madrakhimov U. S., “Initial-boundary value problem for the beam vibration equation in the multidimensional case”, Differ. Equ., 55:10 (2019), 1336–1348 | DOI | DOI | MR | Zbl
[15] Sabitov K. B., Akimov A. A., “Initial-boundary value problem for a nonlinear beam vibration equation”, Differ. Equ., 56:5 (2020), 621–634 | DOI | DOI | MR | Zbl
[16] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Nauka, Moscow, 1969, 528 pp. (In Russian)