Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the Tricomi boundary value problem for a differential-difference leading-lagging equation of mixed type with non-Carleman deviations in all arguments of the required function. A reduction is applied to a mixed-type equation without deviations. Symmetric pairwise commutative matrices of the coefficients of the equation are used. The theorems of uniqueness and existence are proved. The problem is unambiguously solvable.
Keywords: mixed-type equation, differential-difference equation, integral equation, singular integral equation, concentrated lag and lead.
@article{VSGTU_2021_25_1_a2,
     author = {A. N. Zarubin},
     title = {Nonlocal {Tricomi} boundary value problem for a mixed-type differential-difference equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a2/}
}
TY  - JOUR
AU  - A. N. Zarubin
TI  - Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2021
SP  - 35
EP  - 50
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a2/
LA  - ru
ID  - VSGTU_2021_25_1_a2
ER  - 
%0 Journal Article
%A A. N. Zarubin
%T Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2021
%P 35-50
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a2/
%G ru
%F VSGTU_2021_25_1_a2
A. N. Zarubin. Nonlocal Tricomi boundary value problem for a mixed-type differential-difference equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 35-50. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a2/

[1] Sharkovsky A. N., Maistrenko Yu. L., Romanenko E. Yu, Difference Equations and Their Applications, Mathematics and Its Applications, 250, Kluwer Academic Publ., Dordrecht, 1993, xii+358 pp. | DOI | MR | MR | Zbl | Zbl

[2] Onanov G. G., Skubachevskii A. L., “Differential equations with displaced arguments in stationary problems in the mechanics of a deformable body”, Sov. Appl. Mech., 15:5 (1979), 391–397 | DOI | MR | Zbl

[3] Samarskii A. A., “Some problems of the theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 (In Russian) | MR

[4] Maslov V. P., Operatornye metody [Operational Methods], Nauka, Moscow, 1973, 544 pp. (In Russian) | MR

[5] Gantsev Sh., Bakhtizin R. N., Frants M. V., Gantsev K. Sh., “Tumor growth and mathematical modeling of system processes”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 131–151 (In Russian) | DOI | Zbl

[6] Bellman R., Introduction to matrix analysis, Classics in Applied Mathematics, 19, Philadelphia, PA, 1997, xxviii+403 pp. | MR | Zbl

[7] Frankl F. I., Izbrannye trudy po gazovoi dinamike [Selected Works on Gas Dynamics], Nauka, Moscow, 1973, 712 pp. (In Russian)

[8] Zarubin A. N., Uravneniia smeshannogo tipa s zapazdyvaiushchim argumentom [Mixed-Type Equations with Retarded Argument], Orel State Univ., Orel, 1997, 225 pp. (In Russian)

[9] Gakhov F. D., Boundary Value Problems, International Series of Monographs in Pure and Applied Mathematics, 85, Pergamon Press, Oxford, 1966, xix+564 pp. | DOI | MR | Zbl | Zbl

[10] Flaysher N. M., “A new closed-form solution method for some classes of singular integral equations with a regular part”, Rev. Roum. Math. Pures Appl., 10:5 (1965), 615–620 (In Russian) | Zbl

[11] Baburin Yu. S., “On the singularization of singular integral equations”, Differentsial'nye uravneniia [Differential Equations], Issue 10, Ryazan, 1977, 14–24 (In Russian) | MR | Zbl

[12] Krasnov M. L., Integral'nye uravneniia [Integral Equations], Nauka, Moscow, 1975, 303 pp. (In Russian)