Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_1_a1, author = {Zh. A. Balkizov}, title = {The problem with shift for a degenerate hyperbolic equation of the first kind}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {21--34}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a1/} }
TY - JOUR AU - Zh. A. Balkizov TI - The problem with shift for a degenerate hyperbolic equation of the first kind JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 21 EP - 34 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a1/ LA - ru ID - VSGTU_2021_25_1_a1 ER -
%0 Journal Article %A Zh. A. Balkizov %T The problem with shift for a degenerate hyperbolic equation of the first kind %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 21-34 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a1/ %G ru %F VSGTU_2021_25_1_a1
Zh. A. Balkizov. The problem with shift for a degenerate hyperbolic equation of the first kind. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a1/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York, 1993, xxxvi+976 pp. | MR | Zbl | Zbl
[2] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional Calculus and Its Applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl
[3] Smirnov M. M., Vyrozhdaiushchiesia giperbolicheskie uravneniia [Degenerate Hyperbolic Equations], Vysh. shk., Minsk, 1977, 160 pp. (In Russian) | Zbl
[4] Bitsadze A. V., Uravneniia smeshannogo tipa [Equations of Mixed Type], USSR Acad. Sci., Moscow, 1959, 164 pp. (In Russian)
[5] Luikov A. V., “Application of the methods of thermodynamics of irreversible processes to the investigation of heat and mass transfer”, J. Eng. Phys., 9:3 (1965), 189–202 | DOI | MR
[6] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh [Some Classes of Partial Differential Equations], Nauka, Moscow, 1981, 448 pp. (In Russian) | Zbl
[7] Nakhushev A. M., “The Darboux problem for degenerate hyperbolic equations”, Differ. Uravn., 7:1 (1971), 49–56 (In Russian) | MR | Zbl
[8] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of Mathematical Biology], Vyssh. shk., Moscow, 1995, 301 pp. (In Russian) | Zbl
[9] Bers L., Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surveys in Applied Mathematics, 3, John Wiley Sons, New York, 1958, xv+278 pp. | MR | Zbl
[10] Frankl' F. I., Izbrannye trudy po gazovoi dinamike [Selected Works in Gas Dynamics], Nauka, Moscow, 1973, 711 pp. (In Russian) | MR
[11] Gellerstedt S., “Sur une équation linéaire aux dérivées partielles de type mixte”, Ark. Mat. Astron. Fys. A, 25:29 (1937), 1–23 | Zbl
[12] Kal'menov T. Sh., “A criterion for the uniqueness of the solution of the Darboux problem for a certain degenerate hyperbolic equation”, Differ. Uravn., 7:1 (1971), 178–181 (In Russian) | MR | Zbl
[13] Kal'menov T. Sh., “The Darboux problem for a certain degenerate equation”, Differ. Uravn., 10:1 (1974), 59–68 (In Russian) | MR | Zbl
[14] Kal'menov T. Sh., “A criterion for the continuity of the solution of the Goursat problem for a certain degenerate equation”, Differ. Uravn., 8:1 (1972), 41–54 (In Russian) | MR | Zbl
[15] Balkizov Zh. A., “The boundary value problem for a degenerate hyperbolic equation in the area”, Izv. Vuz. Severo-Kavkaz. Region. Ser. Estestv. Nauki, 2016, no. 1(189), 5–10 (In Russian) | DOI
[16] Balkizov Zh. A., “The first boundary value problem for a degenerate hyperbolic equation”, Vladikavkaz. Mat. Zh., 18:2 (2016), 19–30 (In Russian) | MR | Zbl
[17] Kirichenko S. V., “A mixed problem with integral condition for a degenerative equation of the hyperbolic type”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 17:8 (2011), 29–36 (In Russian) | DOI
[18] Repin O. A., Kumykova S. K., “On a problem with generalized operators of fractional differentiation for a degenerated inside a domain hyperbolic equation”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 18:9 (2012), 52–60 (In Russian) | DOI
[19] Repin O. A., Kumykova S. K., “A boundary-value problem with shift for a hyperbolic equation degenerate in the interior of a region”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 37–47 (In Russian) | DOI | Zbl
[20] Repin O. A., Kumykova S. K., “On a class of nonlocal problems for hyperbolic equations with degeneration of type and order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 22–32 (In Russian) | DOI | Zbl
[21] Ehrgashev T. G., “Generalized solutions of the degenerate hyperbolic equation of the second kind with a spectral parameter”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, 41–49 (In Russian) | DOI
[22] Makaova R. Kh., “A boundary value problem for a third order hyperbolic equation with degeneration of order inside the domain”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 651–664 (In Russian) | DOI | Zbl
[23] Sabitov K. B., Zaitseva N. V., “Initial-boundary value problem for hyperbolic equation with singular coefficient and integral condition of second kind”, Lobachevskii J. Math., 39:9 (2018), 1419–1427 | DOI | MR | Zbl
[24] Sabitov K. B., Zaitseva N. V., “The second initial-boundary value problem for a $B$-hyperbolic equation”, Russian Math. (Iz. VUZ), 63:10 (2019), 66–76 | DOI | DOI | MR | Zbl
[25] Sabitov K. B., Sidorov S. N., “Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type”, J. Math. Sci., 236:6 (2019), 603–640 | DOI | MR | Zbl
[26] Urinov A. K., Okboev A. B., “Modified Cauchy problem for one degenerate hyperbolic equation of the second kind”, Ukr. Math. J., 72:1 (2020), 114–135 | DOI | MR | Zbl
[27] Makaova R. Kh., “Boundary-value problem for a third-order hyperbolic equation that is degenerate inside a domain and contains the Aller operator in the principal part”, J. Math. Sci., 250 (2020), 780–787 | DOI | MR | Zbl
[28] Kozhanov A. I., “Initial-boundary value problems for degenerate hyperbolic equations”, Sib. Èlektron. Mat. Izv., 18 (2021), 43–53 (In Russian) | DOI | Zbl
[29] Nakhushev A. M., Ob odnom klasse lineinykh kraevykh zadach dlia giperbolicheskogo i smeshannogo tipov uravnenii vtorogo poriadka [On a Class of Linear Boundary Value Problems for Second Order Hyperbolic and Mixed Type Equations], El'brus, Nal'chik, 1992, 155 pp. (In Russian)
[30] Repin O. A., Kraevye zadachi so smeshcheniem dlia uravnenii giperbolicheskogo i smeshannogo tipov [Boundary-Value Problems with Shift for Equations of Hyperbolic and Mixed Type], Saratov State Univ., Samara Branch, Samara, 1992, 164 pp. (In Russian) | MR | Zbl
[31] Kal'menov T. Sh., Kraevye zadachi dlia lineinykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa [Boundary Value Problems for Linear Partial Differential Equations of Hyperbolic Type], Gylaia, Shymkent, 1993, 328 pp. (In Russian)
[32] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl
[33] Sabitov K. B., K teorii uravnenii smeshannogo tipa [On the Theory of Mixed-Type Equations], Fizmatlit, Moscow, 2014, 301 pp. (In Russian)
[34] Sabitov K. B., Priamye i obratnye zadachi dlia uravnenii parabolo-giperbolicheskogo tipa [Direct and Inverse Problems for Equations of Mixed Parabolic-Hyperbolic Type], Gilem, Ufa, 2015, 240 pp. (In Russian)
[35] Nakhushev A. M., “A new boundary value problem for a degenerate hyperbolic equation”, Sov. Math., Dokl., 10:4 (1969), 935–938 | MR | Zbl