Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2021_25_1_a0, author = {O. Kh. Abdullayev}, title = {On a problem for the parabolic-hyperbolic type equation of~fractional order with non-linear loaded term}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {7--20}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a0/} }
TY - JOUR AU - O. Kh. Abdullayev TI - On a problem for the parabolic-hyperbolic type equation of~fractional order with non-linear loaded term JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2021 SP - 7 EP - 20 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a0/ LA - ru ID - VSGTU_2021_25_1_a0 ER -
%0 Journal Article %A O. Kh. Abdullayev %T On a problem for the parabolic-hyperbolic type equation of~fractional order with non-linear loaded term %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2021 %P 7-20 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a0/ %G ru %F VSGTU_2021_25_1_a0
O. Kh. Abdullayev. On a problem for the parabolic-hyperbolic type equation of~fractional order with non-linear loaded term. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 25 (2021) no. 1, pp. 7-20. http://geodesic.mathdoc.fr/item/VSGTU_2021_25_1_a0/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional Calculus and Its Applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl
[2] Nakhushev A. M., Nagruzhennye uravneniia i ikh primeneniia [Loaded Equations and Their Applications], Nauka, Moscow, 2012, 232 pp. (In Russian)
[3] Sabitov K. B., “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Math. (Iz. VUZ), 59:6 (2015), 23–33 | DOI | Zbl
[4] Melisheva E. P., “Dirichlet problem for loaded equation of Lavrentiev–Bizadze”, Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser., 2010, no. 6(80), 39–47 (In Russian)
[5] Abdullayev O. Kh., “A non-local problem for a loaded mixed-type equation with a integral operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 220–240 (In Russian) | DOI | Zbl
[6] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392 | DOI | DOI | MR | Zbl
[7] Kilbas A. A. Repin O. A, “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fract. Calc. Appl. Anal., 13:1 (2010), 69–84 | Zbl
[8] Kadirkulov B. J., “Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative”, EJDE, 2014:57 (2014), 1–7
[9] Salakhitdinov M. S. Karimov E. T., “On a nonlocal problem with gluing condition of integral form for parabolic-hyperbolic equation with Caputo operator”, Dokl. Akad. Nauk Resp. Uzbekistan, 2014, no. 4, 6–9 (In Russian)
[10] Berdyshev A. S., Cabada A., Karimov E. T., “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann–Liouville fractional differential operator”, Nonlinear Anal. Theory, Methods and Appl., 75:6 (2012), 3268–3273 | DOI | Zbl
[11] Sadarangani K., Abdullaev O. K., “A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative”, Adv. Differ. Equ., 2016 (2016), 241 | DOI | Zbl
[12] Abdullaev O. Kh., “Analog of the Gellerstedt problem for the mixed type equation with integral-differential operators of fractional order”, Uzbek. Math. J., 2019, no. 3, 4–18 | DOI | Zbl
[13] Abdullaev O. K., “On the problem for a mixed-type degenerate equation with Caputo and Erdélyi–Kober pperators of fractional order”, Ukr. Math. J., 71:6 (2019), 825–842 | DOI | Zbl
[14] Pskhu A. V., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Fractional Partial Differential Equations], Nauka, Moscow, 2005, 200 pp. (In Russian)