On alternating and bounded solutions of one class of~integral equations on~the entire axis with monotonic nonlinearity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 644-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the existence and analysis of the qualitative properties of solutions for one class of integral equations with monotonic nonlinearity on the entire line. The indicated class of equations arises in the kinetic theory of gases. The constructive theorems of the existence of bounded solutions are proved, and certain qualitative properties of the constructed solutions are studied. At the end of the paper, specific applied examples of these equations are given.
Keywords: monotonicity, nonlinearity, convexity, limited solution.
Mots-clés : kernel
@article{VSGTU_2020_24_4_a2,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On alternating and bounded solutions of one class of~integral equations on~the entire axis with monotonic nonlinearity},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {644--662},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a2/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On alternating and bounded solutions of one class of~integral equations on~the entire axis with monotonic nonlinearity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 644
EP  - 662
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a2/
LA  - ru
ID  - VSGTU_2020_24_4_a2
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On alternating and bounded solutions of one class of~integral equations on~the entire axis with monotonic nonlinearity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 644-662
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a2/
%G ru
%F VSGTU_2020_24_4_a2
Kh. A. Khachatryan; H. S. Petrosyan. On alternating and bounded solutions of one class of~integral equations on~the entire axis with monotonic nonlinearity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 644-662. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a2/

[1] Kogan M. N., Rarefied Gas Dynamics, Springer Science, New York, 1969, xi+515 pp. | DOI

[2] Engibaryan N. B., Khachatryan A. Kh., “Some convolution-type integral equations in kinetic theory”, Comput. Math. Math. Phys., 38:3 (1998), 452–467 | MR | Zbl

[3] Khachatryan Kh. A., “Solvability of a conservative integral equation on the half-line”, Izv. NAN Armenii. Matematika, 37:4 (2002), 73–80 (In Russian)

[4] Khachatryan Kh. A., Sisakyan A. A., “On solvability of one class of nonlinear integral equations on whole line”, Vestn. of Russian-Armenian (Slavonic) Univ., 2017, no. 2, 25–40 (In Russian)

[5] Khachatryan A. Kh., Khachatryan Kh. A., “A nonlinear integral equation of Hammerstein type with a noncompact operator”, Sb. Math., 201:4 (2010), 595–606 | DOI | DOI | MR | Zbl

[6] Khachatryan Kh. A., Grigoryan S. A., “On nontrivial solvability of a nonlinear Hammerstein–Volterra type integral equation”, Vladikavkaz. Mat. Zh., 14:2 (2012), 57–66 (In Russian)

[7] Kolmogorov A. N., Fomin V. S., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the theory of functions and functional analysis], Nauka, Moscow, 1976, 543 pp. (In Russian)

[8] Arabadzhyan L. G., Khachatryan A. S., “A class of integral equations of convolution type”, Sb. Math., 198:7 (2007), 949–966 | DOI | DOI | MR | Zbl