Non-local problems with an integral condition for~third-order differential equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 607-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the solvability of nonlocal problems with an integral variable $t$ condition for the equations $$u_{tt}+\left(\alpha\frac{\partial}{\partial t}+\beta\right)\Delta u=f(x,t)$$ ($\alpha$, $\beta$ are valid constants, $\Delta$ is Laplace operator by spatial variables). Theorems are proved for the studied problems existence and non-existence, uniqueness and non-uniqueness solutions (having all derivatives generalized by S. L. Sobolev included in the equation).
Keywords: third-order differential equations, non-local problems, integral conditions, regular solutions, uniqueness
Mots-clés : existence.
@article{VSGTU_2020_24_4_a0,
     author = {A. I. Kozhanov and A. V. Dyuzheva},
     title = {Non-local problems with an integral condition for~third-order differential equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {607--620},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a0/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - A. V. Dyuzheva
TI  - Non-local problems with an integral condition for~third-order differential equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 607
EP  - 620
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a0/
LA  - ru
ID  - VSGTU_2020_24_4_a0
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A A. V. Dyuzheva
%T Non-local problems with an integral condition for~third-order differential equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 607-620
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a0/
%G ru
%F VSGTU_2020_24_4_a0
A. I. Kozhanov; A. V. Dyuzheva. Non-local problems with an integral condition for~third-order differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 4, pp. 607-620. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_4_a0/

[1] Dublya Z. D., “The Dirichlet problem for a certain class of third order equations”, Differ. Uravn., 13:1 (1977), 50–55 (In Russian) | MR | Zbl

[2] Larkin N. A., Novikov V. A., Yanenko N. N., Nelineinye uravneniia peremennogo tipa [Nonlinear Equations of Variable Type], Nauka, Novosibirsk, 1983, 270 pp. (In Russian) | MR

[3] Kozhanov A. I., “Boundary value problems and properties of solutions for third-order equations”, Differ. Equ., 25:12 (1989), 1528–1537 | MR

[4] Larkin N. A., “Existence theorems for quasilinear pseudohyperbolic equations”, Sov. Math., Dokl., 26:260–263 (1982) | MR | MR | Zbl

[5] Kozhanov A. I., Composite Type Equations and Inverse Problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999, x+171 pp. | MR | Zbl

[6] Khudaverdiyev K. I.,Veliyev A. A., Issledovanie odnomernoi smeshannoi zadachi dlia odnogo klassa psevdogiperbolicheskikh uravnenii tret'ego poriadka s nelineinoi operatornoi pravoi chast'iu [Investigation of a One-Dimensional Mixed Problem for a Class of Pseudohyperbolic Equations of Third Order with Non-Linear Operator Right Hand Side], Chashyogly, Baku, 2010, 168 pp. (In Russian)

[7] Kozhanov A. I., Potapova S. V., “The Dirichlet problem for a class of composite type equations with a discontinuous coefficient of the highest derivative”, Dal'nevost. Mat. Zh., 14:1 (2014), 48–65 (In Russian) | MR

[8] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniia s dominiruiushchei chastnoi proizvodnoi [Equations with Dominating Partial Derivative], Kazan Univ., Kazan, 2014, 385 pp. (In Russian)

[9] Kozhanov A. I., “Nonlocal problems with integral conditions for elliptic equations”, Complex Variables and Elliptic Equations, 64:5 (2019), 741–752 | DOI | MR

[10] Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, 1991, vii+286 pp. | MR | MR | Zbl

[11] Ladyzhenskaya O. A., Uraltseva N. N., Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering, 46, Academic Press, New York, 1968, xviii+495 pp. | MR | MR | Zbl

[12] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publ., Amsterdam, New York, Oxford, 1978, 528 pp. | MR | Zbl

[13] Evans L. C., Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, Providence pp. | MR | Zbl

[14] Trenogin V. A., Funktsional'nyi analiz [Functional Analysis], Nauka, Moscow, 1980, 495 pp. (In Russian)

[15] Lebedev V. I., Fizmatlit, Moscow, 2005, 296 pp. (In Russian)

[16] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lektsii po matematicheskoi fizike [Lectures on Mathematical Physics], Moscow Univ., Moscow, 2004, 416 pp. (In Russian) | MR