Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 574-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the modeling multidimensional hyperbolic-parabolic equation in the cylindrical area of Euclidean space and formulate the mixed problem with non-homogeneous boundary conditions for it. We show the unique solvability of the problem for the class of continuously differentiable functions and give a way to construct its explicit classical solution.
Keywords: well-posedness of mixed type problem, hyperbolic-parabolic equation, cylindrical area, Bessel functions.
@article{VSGTU_2020_24_3_a7,
     author = {S. A. Aldashev},
     title = {Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {574--582},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a7/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 574
EP  - 582
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a7/
LA  - ru
ID  - VSGTU_2020_24_3_a7
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 574-582
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a7/
%G ru
%F VSGTU_2020_24_3_a7
S. A. Aldashev. Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 3, pp. 574-582. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_3_a7/

[1] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [The Equations of Mathematical Physics], Nauka, Moscow, 1966, 287 pp. (In Russian) | MR | Zbl

[2] Bitsaze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh [Some Classes of Partial Differential Equations], Nauka, Moscow, 1981, 448 pp. (In Russian) | MR | Zbl

[3] Nakhushev A. M., Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh [Problems with Shifts for Partial Differential Equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl

[4] Vragov V. N., Kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Boundary Value Problems for Nonclassical Equations in Mathematical Physics], Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1983, 84 pp. (In Russian) | MR

[5] Karatoprakliev G. D., “Boundary value problems for equations of mixed type in multi-dimensional domains”, Banach Center Publications, 10 (1983), 231–269 (In Russian) | DOI | Zbl

[6] Ladyzhenskaya O. A., Smeshannaya zadacha dlya giperbolicheskogo uravneniya, Gostekhizdat, M., 1953, 279 pp. | MR

[7] Ladyzhenskaia O. A., Kraevye zadachi matematicheskoi fiziki [Boundary Value Problems of Mathematical Physics], Nauka, Moscow, 1973, 407 pp. (In Russian) | MR

[8] Aldashev S. A., “Well-posedness of mixed problems for multidimensional hyperbolic equations with wave operator”, Ukr. Mat. Zh., 69:7 (2017), 992–999 (In Russian) | Zbl

[9] Aldashev S. A., “Ill-posedness of a mixed problem for a multidimensional hyperbolic-parabolic equation”, Actual Problems of Mathematics, Computer Science, Mechanics and Control Theory, Almaty, 2009, 469–474 (In Russian)

[10] Aldashev S. A., “Ill-posedness of a mixed problem for one class of multi-dimensional hyperbolic-parabolic equations”, Kazakh Math. J., 10:4 (2010), 4–12 (In Russian) | Zbl

[11] Mikhlin S. G., Mnogomernye singuliarnye integraly i integral'nye uravneniia [Higher-Dimensional Singular Integrals and Integral Equations], Fizmatgiz, Moscow, 1962, 254 pp. (In Russian) | MR

[12] Mikhlin S. G., Lineinye uravneniia v chastnykh proizvodnykh [Linear Partial Differential Equations], Vyssh. Shk., Moscow, 1977, 431 pp. (In Russian) | MR

[13] Kamke È., Spravochnik po obyknovennym differentsial'nym uravneniiam [Manual of Ordinary Differential Equations], Nauka, Moscow, 1965, 703 pp. (In Russian) | MR

[14] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | MR | Zbl