An undamped oscillation model with two
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 390-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to further elucidate the dynamic theory of droplet oscillating on solid surface, a new handling method of contact angle of the droplet during the process of the oscillation was founded, which is based on the spherical model. The influence of gravity on the contact angle and spreading radius was discussed. Thus, an equation between the spreading radius of the droplet and time flow was founded. The results of theoretical calculation were compared with smoothed numerical results.
Keywords: droplet oscillation, contact angle, theoretical analysis, spectrum analysis.
@article{VSGTU_2020_24_2_a9,
     author = {S. Chen and B. Cong and D. Zhang and X. Liu and S. Shen},
     title = {An undamped oscillation model with two},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {390--400},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a9/}
}
TY  - JOUR
AU  - S. Chen
AU  - B. Cong
AU  - D. Zhang
AU  - X. Liu
AU  - S. Shen
TI  - An undamped oscillation model with two
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 390
EP  - 400
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a9/
LA  - en
ID  - VSGTU_2020_24_2_a9
ER  - 
%0 Journal Article
%A S. Chen
%A B. Cong
%A D. Zhang
%A X. Liu
%A S. Shen
%T An undamped oscillation model with two
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 390-400
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a9/
%G en
%F VSGTU_2020_24_2_a9
S. Chen; B. Cong; D. Zhang; X. Liu; S. Shen. An undamped oscillation model with two. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 390-400. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a9/

[1] Nakayama Y., Kidokoro T., Sakurai K., Fuel injection control system of an internal combustion engine, US Patent no. US9169758B2, 2015 https://patents.google.com/patent/US9169758B2/

[2] Slater S.D., Clippingdale A.J., Newcombe G.C.F., Printing process and liquid ink jet ink, US Patent no. US9156256B2, 2015 https://patents.google.com/patent/US9156256B2/

[3] Qi C.H., Feng H.J., Lv H.Q., Miao C., “Numerical and experimental research on the heat transfer of seawater desalination with liquid film outside elliptical tube”, Int. J. Heat Mass Transfer, 93 (2016), 207–216 | DOI

[4] Hartfield J.P., Sanborn D.F., Falling film evaporator with refrigerant distribution system, Canada Patent no. CA2219676A1, 1995 https://patents.google.com/patent/CA2219676A1/

[5] Young T., “An essay on the cohesion of fluids”, Phil. Trans. Roy. Soc. London, 95 (1805), 65–87 | DOI

[6] Laplace P.S., “Sur l'action capillaire. Supplément à la théorie de l'action capillaire”, Traité de mécanique céleste, v. 4, Supplement 1, Livre X, Gauthier–Villars et fils, Paris, 1805, 771–777

[7] Šikalo Š., Marengo M , Tropea C., Ganić E.N., “Analysis of impact of droplets on horizontal surfaces”, Experimental Thermal and Fluid Science, 25:7 (2002), 503–510 | DOI

[8] Bayer I. S., Megaridis C. M., “Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics”, J. Fluid Mechanics, 558 (2006), 415–449 | DOI | Zbl

[9] Remer M., Psarski M., Gumowski K., Rokicki J., Sobieraj G., Kaliush M., Pawlak D., Celichowski G., “Dynamic water contact angle during initial phases of droplet impingement”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508 (2016), 57–69 | DOI

[10] Lunkad S. F., Buwa V. V., Nigam K.D.P., “Numerical simulations of drop impact and spreading on horizontal and inclined surfaces”, Chem. Eng. Sci., 62:24 (2007), 7214–7224 | DOI

[11] Yao Y., Meng S., Li C., Chen X., Yang R., “Droplet oscillation after impact on a solid surface”, International Mechanical Engineering Congress and Exposition, 7, Fluids Engineering (2016), IMECE2016-66025 | DOI

[12] Šikalo Š. , Wilhelm H.-D., Roisman I. V. , Jakirlić S., Tropea C., “Dynamic contact angle of spreading droplets: Experiments and simulations”, Phys. Fluids, 17:6 (2005), 062103 | DOI

[13] Vafaei S., Podowski M. Z., “Theoretical analysis on the effect of liquid droplet geometry on contact angle”, Nuclear Eng. Design, 235:10–12 (2005), 1293–1301 | DOI

[14] Vafaei S., Podowski M. Z., “Analysis of the relationship between liquid droplet size and contact angle”, Adv. Colloid Interface Sci., 113:2–3 (2005), 133–146 | DOI

[15] Roisman I. V., Rioboo R., Tropea C., “Normal impact of a liquid drop on a dry surface: model for spreading and receding”, Proc. Royal. Soc. A, 458 (2002), 1411–1430 | DOI | Zbl

[16] Chen S., Zhang D., Shen S., Liu X., Chen Y., “Spherical drop impact on solid surfaces: Un-damped oscillation theoretical model”, AIP Conf. Proc., 1984:1 (2018), 020032 | DOI