Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_2_a4, author = {E. Yu. Prosviryakov}, title = {Exact solutions to generalized plane {Beltrami{\textendash}Trkal} {and~Ballabh} flows}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {319--330}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a4/} }
TY - JOUR AU - E. Yu. Prosviryakov TI - Exact solutions to generalized plane Beltrami–Trkal and~Ballabh flows JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 319 EP - 330 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a4/ LA - en ID - VSGTU_2020_24_2_a4 ER -
%0 Journal Article %A E. Yu. Prosviryakov %T Exact solutions to generalized plane Beltrami–Trkal and~Ballabh flows %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 319-330 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a4/ %G en %F VSGTU_2020_24_2_a4
E. Yu. Prosviryakov. Exact solutions to generalized plane Beltrami–Trkal and~Ballabh flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 2, pp. 319-330. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_2_a4/
[1] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1966 | DOI | MR
[2] Lamb H., Hydrodynamics, Cambridge Univ., Cambridge, 1924 | MR | Zbl
[3] Zhuravlev V. M., “A new representation of the two-dimensional equations of the dynamics of an incompressible fluid”, J. Appl. Math. Mech., 58:6 (1994), 1003–1009 | DOI | MR | Zbl
[4] Chernyi G. G., “Plane steady self-similar vortex flows of an ideal fluid (Keplerian motions)”, Dokl. Math., 42:1 (1997), 52–55 | MR | Zbl
[5] Ladyzhenskaya O. A., “Sixth problem of the millennium: Navier-Stokes equations, existence and smoothness”, Russ. Math. Surv., 58:2 (2003), 251–286 | DOI | MR | Zbl
[6] Aristov S. N., Pukhnachev V. V., “On the equations of axisymmetric motion of a viscous incompressible fluid”, Dokl. Phys., 49:2 (2004), 112–115 | DOI | MR
[7] Pukhnachev V. V., “Integrals of motion of an incompressible fluid occupying the entire space”, J. Appl. Mech. Tech. Phys., 45:2 (2004), 167–171 | DOI | MR | Zbl
[8] Moshkin N. P., Poochinapan K., Christov C. I., “Numerical implementation of Aristov–Pukhnachev's formulation for axisymmetric viscous incompressible flows”, Int. J. Numer. Meth. Fluids, 62:10 (2010), 1063–1080 | DOI | MR | Zbl
[9] Moshkin N. P., Poochipan K., “Novel finite difference scheme for the numerical solution of two-dimensional incompressible Navier-Stokes equations”, Int. J. Numer. Anal. Mod., 7:2 (2010), 321–329 | MR
[10] Golubkin V. N., Markov V. V., Sizykh G. B., “The integral invariant of the equations of motion of a viscous gas”, J. Appl. Math. Mech., 79:6 (2015), 566–571 | DOI | MR | Zbl
[11] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI | MR
[12] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1958), 391–395 | DOI | MR | Zbl
[13] Neményi P. F., “Recent developments in inverse and semi-inverse methods in the mechanics of continua”, R. von Mises, Th. von Kármán (eds.), Advances in Applied Mechanics, v. 2, Academic Press, New York, 1951, 123–151 | DOI | MR
[14] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR
[15] Meleshko S. V., Pukhnachev V. V., “One class of partially invariant solutions of the Navier–Stokes equations”, J. Appl. Mech. Tech. Phys., 40:2 (1999), 208–216 | DOI | MR | Zbl
[16] Ludlow D. K., Clarkson P. A., Bassom A. P., “Similarity reductions and exact solutions for the two‐dimensional incompressible Navier–Stokes equations”, Stud. Appl. Math., 103:3 (1999), 183–240 | DOI | MR | Zbl
[17] Polyanin A. D., “Exact solutions to the Navier–Stokes equations with generalized separation of variables”, Dokl. Phys., 46:10 (2001), 726–731 | DOI | MR
[18] Meleshko S. V., “A particular class of partially invariant solutions of the Navier–Stokes equations”, Nonlinear Dynam., 36:1 (2004), 47–68 | DOI | MR | Zbl
[19] Pukhnachev V. V., “Symmetries in Navier-Stokes equations”, Usp. Mekh., 4:1 (2006), 6–76 (In Russian)
[20] Drazin P. G., Riley N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge Univ., Cambridge, 2006 | DOI | MR | Zbl
[21] Polyanin A. D., Aristov S. N., “A new method for constructing exact solutions to three-dimensional Navier–Stokes and Euler equations”, Theor. Found. Chem. Eng., 45:6 (2011), 885–890 | DOI | MR
[22] Aristov S. N., Polyanin A. D., “New classes of exact solutions and some transformations of the Navier–Stokes equations”, Russ. J. Math. Phys., 17:1 (2010), 1–18 | DOI | MR | Zbl
[23] Maslov V. P., Shafarevich A. I., “Asymptotic solutions of Navier–Stokes equations and topological invariants of vector fields and Liouville foliations”, Theor. Math. Phys., 180:2 (2014), 967–982 | DOI | MR | Zbl
[24] Allilueva A. I., Shafarevich A. I., “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421–436 | DOI | MR | Zbl
[25] Broman G. I., Rudenko O. V., “Submerged Landau jet: exact solutions, their meaning and application”, Physics–Uspekhi, 53:1 (2010), 91–98 | DOI
[26] Aristov S. N., Polyanin A. D., “New classes of exact solutions of Euler equations”, Dokl. Phys., 53:3 (2008), 166–171 | DOI | MR | Zbl
[27] Couette M., “Études sur le frottement des liquids”, Ann. de Chim. et Phys. (6), 21 (1890), 433–510 (In French) | Zbl
[28] Poiseuille J., “Récherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres”, C. R. Acad. Sci., 11 (1840), 961–967, 1041–1048
[29] Poiseuille J., “Récherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres”, C. R. Acad. Sci., 12 (1841), 112–115
[30] Stokes G. G., “On the effect of the internal friction of fluid on the motion of pendulums”, Trans. Cambridge Philos. Soc., 9 (1851), 8–106
[31] v. Kármán Th., “Über laminare und turbulente Reibung”, ZAMM, 1:4 (1921), 233–252 (In German) | DOI | Zbl
[32] Hiemenz K., “Die Grenzschicht an einem inden gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Polytech. J., 326 (1911), 321–324 (In German) http://dingler.culture.hu-berlin.de/article/pj326/ar326114
[33] Aristov S. N., Prosviryakov E. Yu., “Inhomogeneous Couette flow”, Nelin. Dinam., 10:2 (2014), 177–182 (In Russian) | Zbl
[34] Aristov S. N., Prosviryakov E. Yu., “Stokes waves in vortical fluid”, Nelin. Dinam., 10:3 (2014), 309–318 (In Russian) | Zbl
[35] Aristov S. N., Prosviryakov E. Yu., “Unsteady layered vortical fluid flows”, Fluid Dyn., 51:2 (2016), 148–154 | DOI | MR | Zbl
[36] Aristov S. N., Shvarts K. G., Vortical Flows of the Advective Nature in a Rotating Fluid Layer, Perm State Univ., Perm, 2006 (In Russian)
[37] Aristov S. N., Shvarts K. G., Vortical Flows in Thin Fluid Layers, Vyatka State Univ., Kirov, 2011, 207 pp. (In Russian)
[38] Andreev V. K., Bekezhanova V. B., “Stability of nonisothermal fluids (Review)”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 171–184 | DOI | MR | Zbl
[39] Ryzhkov I. I., Thermal Diffusion in Mixtures: Equations, Symmetries, Solutions and their Stability, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013 (In Russian)
[40] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three dimensional thermal diffusion equations”, Theor. Found. Chem. Eng., 50:3 (2016), 286–293 | DOI
[41] Beltrami E., “Considerazioni idrodinamiche”, Rend. Inst. Lombardo Acad. Sci. Lett., 22 (1889), 122–131
[42] Trkal V., “Poznámka k hydrodynamice vazkých tekutin”, Časopis, 48 (1919), 302–311 (In Czech) | Zbl
[43] Gromeka I. S., Collected Works, Akad. Nauk SSSR, Moscow, 1952 (In Russian) | MR
[44] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ., Cambridge, 2000 | DOI | MR
[45] Lavrent'ev M. A., Shabat B. V., Methodsof the Theory of Functions of a Complex Variable, Nauka, Moscow, 1987 (In Russian) | MR
[46] Markov V. V., Sizykh G. B., “Exact solutions of the Euler equations for some two-dimensional incompressible flows”, Proc. Steklov Inst. Math., 294:1 (2016), 283–290 | DOI | MR | Zbl
[47] Ballabh R., “Self superposable motions of the type $\xi=\lambda u$, etc.”, Proc. Benares Math. Soc., n. Ser., 2 (1940), 85–89 | MR
[48] Ballabh R., “Superposable motions in a heterogeneous incompressible fluid”, Proc. Benares Math. Soc., n. Ser., 3 (1941), 1–9 | MR | Zbl
[49] Ballabh R., “On coincidence of vortex and stream lines in ideal liquids”, Ganita, 1 (1950), 1–4 | MR | Zbl