Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2020_24_1_a2, author = {K. B. Sabitov}, title = {Asymptotic estimates of the difference of products of {Bessel} functions by the integral of these functions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {41--55}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a2/} }
TY - JOUR AU - K. B. Sabitov TI - Asymptotic estimates of the difference of products of Bessel functions by the integral of these functions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2020 SP - 41 EP - 55 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a2/ LA - ru ID - VSGTU_2020_24_1_a2 ER -
%0 Journal Article %A K. B. Sabitov %T Asymptotic estimates of the difference of products of Bessel functions by the integral of these functions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2020 %P 41-55 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a2/ %G ru %F VSGTU_2020_24_1_a2
K. B. Sabitov. Asymptotic estimates of the difference of products of Bessel functions by the integral of these functions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 41-55. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a2/
[1] Sabitov K. B., Rakhmanova L. Kh., “Initial-boundary value problem for an equation of mixed parabolic-hyperbolic type in a rectangular domain”, Differ. Equ., 44:9 (2008), 1218–1224 | DOI | MR | Zbl
[2] Sabitova Yu. K., “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Russian Math. (Iz. VUZ), 53:12 (2009), 41–49 | DOI | MR | Zbl
[3] Burkhanova (Khadzhi) I. A., “An uniqueness criterion for solving of the inverse problem of mixed-type equation with Chaplygin type operator”, Differents. uravneniia i smezhnye problemy [Differential Equations and Related Problems], v. 1, Bashkir State Univ., Ufa, 2013, 140–144 (In Russian)
[4] Sabitov K. B., Sidorov S. N., “On a nonlocal problem for a degenerating parabolic-hyperbolic equation”, Differ. Equ., 50:3 (2014), 352–361 | DOI | MR | Zbl
[5] Sabitova Yu. K., “Boundary-value problem with nonlocal integral condition for mixed-type equations with degeneracy on the transition line”, Math. Notes, 98:3 (2015), 454–465 | DOI | DOI | MR | Zbl
[6] Sabitov K. B., Sidorov S. N., “Inverse problem for degenerate parabolic-hyperbolic equation with nonlocal boundary condition”, Russian Math. (Iz. VUZ), 59:1 (2015), 39–50 | DOI | MR | Zbl
[7] Martem'yanova N. V., “A necessary and sufficient condition for the uniqueness of a solution of nonlocal inverse problem for Chaplygin-type equation”, Matematicheskoe modelirovanie protsessov i sistem [Mathematical modeling of processes and systems] (November 17–19, 2016, Sterlitamak), Sterlitamak branch of Bashkir State Univ., Sterlitamak, 2016, 19–23 (In Russian)
[8] Sabitova Y. K., “The Dirichlet problem for a hyperbolic-type equation with power degeneracy in a rectangular domain”, Differ. Equ., 54:2 (2018), 228–238 | DOI | DOI | MR | Zbl
[9] Sabitov K. B., Sidorov S. N., “Initial-boundary-value problem for inhomogeneous degenerate equations of mixed parabolic-hyperbolic type”, J. Math. Sci. (N. Y.), 236:6 (2019), 603–640 | DOI | MR | Zbl
[10] Sidorov S. N., “Inverse problems for a mixed parabolic-hyperbolic equation with a degenerate parabolic part”, Sib. Elektron. Math. Reports, 16 (2019), 144–157 (In Russian) | DOI | MR | Zbl
[11] Von Lommel E., “Ueber eine mit den Bessel'schen Functionen verwandte Function”, Math. Ann., 9:3 (1875), 425–444 | DOI | MR
[12] Watson G. N., A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1944, vi+804 pp. | MR | Zbl
[13] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, xvii+396 pp. | MR | Zbl
[14] Sabitov K. B., “Calculating definite integrals of products of Bessel functions”, Mosc. Univ. Comput. Math. Cybern., 47 (1992), 26–32 | MR | Zbl
[15] Sabitov K. B., “Construction in explicit form of solutions of the Darboux problems for the telegraph equation and their application in the inversion of integral equations. II.”, Differ. Equ., 28:7 (1992), 901–908 | MR | MR | Zbl
[16] Riekstiṇš E. J., Asimptoticheskie razlozheniia integralov [Asymptotic Expansions of Integrals], v. 3, Zinatne, Riga, 1981, 370 pp. (In Russian) | MR | Zbl
[17] Riekstiṇš E. J., Asimptoticheskie razlozheniia integralov [Asymptotic Expansions of Integrals], v. 1, Zinatne, Riga, 1974, 392 pp. (In Russian) | Zbl
[18] Tikhonov A. N., “The asymptotic behaviour of integrals containing Bessel functions”, Dokl. Akad. Nauk SSSR, 125:5 (1959), 982–985 (In Russian) | Zbl