The nonlocal problem for a non-stationary third order composite type equation with general boundary condition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 187-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlocal boundary value problem for non-stationary composite type equation of the third order. The values of function and its derivatives up to the second order on the boundary are given as a linear combination. The initial conditions are nonlocal. We prove the unique solvability for this problem. In proving the problem solution uniqueness we use the method of energy integrals and the theory of quadratic forms. For the problem solution construction we use the potential theory and Volterra integral equations. Some asymptotic properties of the fundamental solutions of the equation are studied.
Keywords: non-stationary equations, fundamental solutions, boundary value problem, potential theory, energy integral method, third order equations, system of integral equations, nonlocal problem.
Mots-clés : composite type equations
@article{VSGTU_2020_24_1_a10,
     author = {A. R. Khashimov},
     title = {The nonlocal problem for a non-stationary third order composite type equation with general boundary condition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {187--198},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a10/}
}
TY  - JOUR
AU  - A. R. Khashimov
TI  - The nonlocal problem for a non-stationary third order composite type equation with general boundary condition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2020
SP  - 187
EP  - 198
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a10/
LA  - ru
ID  - VSGTU_2020_24_1_a10
ER  - 
%0 Journal Article
%A A. R. Khashimov
%T The nonlocal problem for a non-stationary third order composite type equation with general boundary condition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2020
%P 187-198
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a10/
%G ru
%F VSGTU_2020_24_1_a10
A. R. Khashimov. The nonlocal problem for a non-stationary third order composite type equation with general boundary condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 24 (2020) no. 1, pp. 187-198. http://geodesic.mathdoc.fr/item/VSGTU_2020_24_1_a10/

[1] Cattabriga L., “Un problema al contorno per una equazione parabolica di ordine dispari”, Annali della Scuola Normale Superiore di Pisa — Classe di Scienze, Serie 3, 13:2 (1959), 163–203 | MR | Zbl

[2] Abdinazarov S., Sobirov Z. A., “On fundamental solutions of an equation with multiple third-order characteristics in a multidimensional space”, Differential Equations with Partial Derivatives and Related Problems of Analysis and Informatics, Proc. Int. Sci. Conf., Tashkent, 2004, 12–13 (In Russian)

[3] Khashimov A. R., “On some properties of fundamental solutions of a non-stationary oddorder equation of composite type in multidimensional domains”, Dokl. Akad. Nauk Resp. Uzb., 2010, no. 5, 6–9 (In Russian)

[4] Faminskij A. V., “The Cauchy problem for the Zakharov–Kuznetsov equation”, Differ. Equ., 31:6 (1995), 1002–1012 | MR | Zbl

[5] Popov S. P., “Numerical simulation of two-soliton solutions to the Zakharov–Kuznetsov equation”, Comput. Math. Math. Phys., 39:10 (1999), 1679–1686 | MR | MR | Zbl

[6] Khashimov A. R., “Some properties of the fundamental solutions of nonstationary third order composite type equation in multidimensional domains”, J. Nonlin. Evol. Equ. Appl., 2013, no. 1, 29–38 | MR

[7] Khashimov A. R., Yakubov S., “On some properties of Cauchy problem for non-stationary third order composite type equation”, Ufa Math. J., 6:4 (2014), 135–144 | DOI | MR

[8] Faminskii A. V., “Nonlocal well-posedness of the mixed problem for the Zakharov–Kuznetsov equation”, J. Math. Sci., 147:1 (2007), 6524–6537 | DOI | MR | Zbl

[9] Kozhanov A. I., Boundary Value Problems for Mathematical Physics Equations of Odd Order, Novosibirsk State Univ., Novosibirsk, 1990, 130 pp. (In Russian)

[10] Faminskii A. V., Opritova M. A., “On the Initial-Value Problem for the Kawahara Equation”, J. Math. Sci., 201:5 (2014), 614–633 | DOI | MR | Zbl

[11] Katson V. M., “Solitary waves of two-dimensional modified Kawahara equation”, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelinejn. Din., 16:6 (2008), 76–85 (In Russian) | Zbl

[12] Sangare K., Faminskii A. V., “Weak solutions of a mixed problem in a half-strip for a generalized Kawahara equation”, Math. Notes, 85:1 (2009), 90–100 | DOI | DOI | MR | Zbl

[13] Faminskii A. V., Kuvshinov R. V., “Initial-boundary value problems for the generalized Kawahara equation”, Russian Math. Surveys, 66:4 (2011), 819–821 | DOI | DOI | MR | Zbl

[14] Khashimov A. R., “On the second boundary value problem for nonstationary third-order equations of mixed type”, Math. Notes of NEFU, 24:4 (2017), 76–86 (In Russian) | DOI | Zbl