Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 764-770.

Voir la notice de l'article provenant de la source Math-Net.Ru

Swirling axisymmetric stationary flows of an ideal incompressible fluid are considered within the framework of the Euler equations. A number of new exact solutions to the Euler equations are presented, where, as distinct from the known Gromeka–Beltrami solutions, vorticity is noncollinear with velocity. One of the obtained solutions corresponds to the flow inside a closed volume, with the nonpermeability condition fulfilled at its boundary, the vector lines of vorticity being coiled on revolution surfaces homeomorphic to a torus.
Keywords: ideal incompressible fluid, swirling axisymmetric flows
Mots-clés : Euler equations, exact solutions.
@article{VSGTU_2019_23_4_a9,
     author = {E. Yu. Prosviryakov},
     title = {Non-helical exact solutions to the {Euler} equations for swirling axisymmetric fluid flows},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {764--770},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a9/}
}
TY  - JOUR
AU  - E. Yu. Prosviryakov
TI  - Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 764
EP  - 770
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a9/
LA  - en
ID  - VSGTU_2019_23_4_a9
ER  - 
%0 Journal Article
%A E. Yu. Prosviryakov
%T Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 764-770
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a9/
%G en
%F VSGTU_2019_23_4_a9
E. Yu. Prosviryakov. Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 764-770. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a9/

[1] Arnold V. I., “Sur la topologie des écoulements stationnaires des fluides parfaits”, Vladimir I. Arnold — Collected Works, v. 2, A. Givental, et all. , Springer, Berlin, Heidelberg, 1965, 15–18 | DOI | MR

[2] Kozlov V. V., “Notes on steady vortex motions of continuous medium”, J. Appl. Math. Mech., 47:2 (1983), 288–289 | DOI | MR

[3] Kozlov V. V., General Vortex Theory, Udmurtia Univ., Izhevsk, 1998, 238 pp. (In Russian) | MR

[4] Sizykh G. B., “Helical vortex lines in axisymmetric viscous incompressible fluid flow”, Fluid Dyn., 54:8 (2019), 1038–1042 | DOI

[5] Gromeka I. S., Collected works, Acad. Sci. USSR, Moscow, 1952, 296 pp. (In Russian) | MR

[6] Beltrami E., “Considerazioni idrodinamiche”, Rend. Inst. Lombardo Acad. Sci. Lett., 22 (1889), 122–131

[7] Sizykh G. B., “Axisymmetric Helical Flows of Viscous Fluid”, Russian Mathematics, 63:2 (2019), 44–50 | DOI

[8] Meissel E., “Über den Ausfluss des Wassers aus Gefässen in zwei besonderen Fällen nach Eintritt des Beharrungszustandes”, Grunert Arch., 55 (1873), 241–252 (In German) | Zbl

[9] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1999, xvii+615 pp | DOI | MR | Zbl

[10] Loitsyanskii L. G., Mechanics of Liquids and Gases, Pergamon Press, Oxford, 1972, xii+802 pp. | MR | Zbl