Modeling of the extracellular information field influence in~dynamics of the
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 705-723.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamic nonlinear 2D model of the extracellular information field influence in the dynamics of risks of the cancer tumor formation and development has been considered. Physical properties of the extracellular matrix, availability of nutrients, oxygen concentration, pH of the extracellular matrix, interaction with stromal cells, and etc. are considered as the main external parameters forming the informational metabolic potential. Within the framework of the constructed 2D analytical model, it has been shown that microinteraction through the extracellular matrix of emerging cancer cells through a dynamic informational metabolic profile significantly influences the risk dynamics of the formation and development of a cancer tumor. It is shown that, depending on the structure of the 2D informational metabolic profile, a number of characteristic nonlinear features such as 2D bifurcations, beats, chaos, imposed on integral dynamic curves resembling by the Gompertz function, describing the probable risks of the formation and development of a cancerous tumor, are appeared. A comparison of the results of our analytical model under consideration with the results of the modeling of other authors on the consideration of chaotic and bifurcation dynamics in the “tumor–immune cluster–virus” system has been made. As a result of the quantitative estimations carried out within framework of the proposed theoretical model, we can formulate a method for assessing the risks of developing malignant neoplasms, characterized in that subfebrile temperature, caspase level, colposcopic Raid index, which determine the threshold for the formation of malignant neoplasms, and identified as the risk factors.
Keywords: extracellular information field, bifurcation and chaotic dynamics, models of the formation and development of a cancer tumor.
@article{VSGTU_2019_23_4_a5,
     author = {O. I. Artemova and V. D. Krevchik and M. B. Semenov},
     title = {Modeling of the extracellular information field influence in~dynamics of the},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {705--723},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a5/}
}
TY  - JOUR
AU  - O. I. Artemova
AU  - V. D. Krevchik
AU  - M. B. Semenov
TI  - Modeling of the extracellular information field influence in~dynamics of the
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 705
EP  - 723
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a5/
LA  - ru
ID  - VSGTU_2019_23_4_a5
ER  - 
%0 Journal Article
%A O. I. Artemova
%A V. D. Krevchik
%A M. B. Semenov
%T Modeling of the extracellular information field influence in~dynamics of the
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 705-723
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a5/
%G ru
%F VSGTU_2019_23_4_a5
O. I. Artemova; V. D. Krevchik; M. B. Semenov. Modeling of the extracellular information field influence in~dynamics of the. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 4, pp. 705-723. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_4_a5/

[1] Muir A., Danai L. V., Vander Heiden M. G., “Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies”, Disease Models Mechanisms, 11:8 (2018), dmm035758 | DOI

[2] Eftimie R., Macnamara C. K., Dushoff J., Bramson J. L., Earn D.J.D., “Bifurcations and chaotic dynamics in a tumour-immune-virus system”, Math. Model. Nat. Phenom., 11:5 (2016), 65–85 | DOI | MR | Zbl

[3] Al-Mahdi A. M., Khirallah M. Q., “Bifurcation analysis of a model of cancer”, Eur. Sci. J., 12:3 (2016), 67–83 | DOI | MR

[4] Fadaka A., Ajiboye B., Ojo O. et al., “Biology of glucose metabolization in cancer cells”, J. Oncology Sci., 3:2 (2017), 45–51 | DOI

[5] Kolobov A. V., Anashkina A. A., Gubernov V. V., Polezhaev A. A., “Mathematical model of tumor growth with migration and proliferation dichotomy”, Computer Research and Modeling, 1:4 (2009), 415–422 (In Russian) | DOI

[6] Zhukova I. V., Kolpak E. P., “Mathematical models of malignant tumour”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 3, 5–18 (In Russian)

[7] Kolobov A. V., Gubernov V. V., Polezhaev A. A., “Autowaves in the model of infiltrative tumour growth with migration-proliferation dichotomy”, Math. Model. Nat. Phenom., 6:7 (2011), 27–38 | DOI | MR

[8] Altrock P. M., Liu L. L., Michor F., “The mathematics of cancer: integrating quantitative models”, Nature Reviews Cancer, 15:12 (2015), 730–745 | DOI

[9] Kuchumov A. G., “Mathematical modelling and biomechanical approach to describe the development, the diagnostics, and the treatment of oncological diseases”, Russian Journal of Biomechanics, 14:4 (2010), 42–69 (In Russian)

[10] Anastasiou D., “Tumour microenvironment factors shaping the cancer metabolism landscape”, British Journal of Cancer, 116:3 (2017), 277–286 | DOI

[11] Boroughs L. K., DeBerardinis R. J., “Metabolic pathways promoting cancer cell survival and growth”, Nature Cell Biology, 17:4 (2015), 351–359 | DOI

[12] Aringazin A. K., Dahnovsky Y., Krevchik V. D., Semenov M. B., Ovchinnikov A. A., Yamamoto K., “Two-dimensional tunnel correlations with dissipation”, Phys. Rev. B, 68 (2003), 155426, arXiv: [cond-mat.mes-hall] ; Aringazin A. K., Dahnovsky Yu., Krevchik V. D., Semenov M. B., Veremyev V. A., Ovchinnikov A. A., Yamamoto K., “Two-dimensional tunnel correlations with dissipation”, Hadronic Journal, 27:2 (2004), 115–150; Арынгазин А. К., Веремьев В. А., Дахновский Ю. И., Кревчик В. Д. Овчинников А. А., Семенов М. Б., Ямамото К., “Двумерные туннельные корреляции с диссипацией”, Управляемое диссипативное туннелирование. Туннельный транспорт в низкоразмерных системах, ред. Э. Д. Леггет, Физматлит, М., 2011, 262–287 cond-mat/0212623https://www.rfbr.ru/rffi/ru/books/o_491815 | DOI