Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2019_23_3_a9, author = {A. Kh. Khibiev}, title = {Stability and convergence of difference schemes for~the~multi-term time-fractional diffusion equation with~generalized memory kernels}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {582--597}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a9/} }
TY - JOUR AU - A. Kh. Khibiev TI - Stability and convergence of difference schemes for~the~multi-term time-fractional diffusion equation with~generalized memory kernels JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2019 SP - 582 EP - 597 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a9/ LA - ru ID - VSGTU_2019_23_3_a9 ER -
%0 Journal Article %A A. Kh. Khibiev %T Stability and convergence of difference schemes for~the~multi-term time-fractional diffusion equation with~generalized memory kernels %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2019 %P 582-597 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a9/ %G ru %F VSGTU_2019_23_3_a9
A. Kh. Khibiev. Stability and convergence of difference schemes for~the~multi-term time-fractional diffusion equation with~generalized memory kernels. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 582-597. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a9/
[1] Oldham K. B., Spanier J., The fractional calculus; Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press, New York, London, 1974, xiii+234 pp. | MR | Zbl
[2] Podlubny I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | DOI | MR | Zbl
[3] Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Scientific, Singapore, 2000, viii+463 pp. | MR | Zbl
[4] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006, xvi+523 pp. | DOI | MR | Zbl
[5] Jiao Z., Chen Y., Podlubny I., Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, Springer Briefs in Control, Automation and Robotics, Springer-Verlag, London, 2012, xiii+90 pp. | DOI | MR | Zbl
[6] Luchko Y., “Boundary value problems for the generalized time-fractional diffusion equation of distributed order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422 http://www.math.bas.bg/~fcaa/volume12/fcaa124/Luchko_fcaa_12_4.pdf | MR | Zbl
[7] Luchko Y., “Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation”, J. Math. Anal. Appl., 374:2 (2011), 538–548 | DOI | MR | Zbl
[8] Gao G. H., Alikhanov A. A., Sun Z. Z., “The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations”, J. Sci. Comput., 73:1 (2017), 93–121 | DOI | MR | Zbl
[9] Sandev T., Chechkin A., Kantz H., Metzler R., “Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel”, Fract. Calc. Appl. Anal., 18:4 (2015), 1006–1038 | DOI | MR | Zbl
[10] Alikhanov A. A., “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differ. Equ., 46:5 (2010), 660–666, arXiv: [math.NA] 1105.4592 | DOI | MR | Zbl
[11] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219 (2012), 3938–3946, arXiv: [math.NA] 1105.2033 | DOI | MR | Zbl
[12] Alikhanov A. A., “A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions”, Comput. Methods Appl. Math., 17:4 (2017), 647–660 | DOI | MR
[13] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438, arXiv: [math.NA] 1404.5221 | DOI | MR | Zbl
[14] Alikhanov A. A., “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Appl. Math. Comput., 268 (2015), 12–22, arXiv: [math.NA] 1311.2035 | DOI | MR | Zbl
[15] Alikhanov A. A., “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. and Math. Phys., 56:4 (2016), 561–575 | DOI | DOI | MR | Zbl
[16] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Difference methods for solving boundary value problems for fractional differential equations”, Comput. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR
[17] Sakamoto K., Yamamoto M., “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382:1 (2011), 426–447 | DOI | MR | Zbl
[18] Luchko Y., “Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation”, Fract. Calc. Appl. Anal., 15:1 (2012), 141–160, arXiv: [math.AP] 1111.2961 | DOI | MR | Zbl
[19] Alikhanov A. A., “A difference method of solving the Steklov nonlocal boundary value problem of second kind for the time-fractional diffusion equation”, Comput. Methods Appl. Math., 17:1 (2017), 1–16, arXiv: [math.NA] 1405.0030 | DOI | MR | Zbl
[20] Stynes M., O'Riordan E., Gracia J. L., “Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation”, SIAM J. Numer. Anal., 55:2, 1057–1079 | DOI | MR | Zbl
[21] Jin B., Lazarov R., Zhou Z., “An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data”, IMA J. Numer. Anal., 36:1, 197–221, arXiv: [math.NA] 1501.00253 | DOI | MR | Zbl
[22] Jin B., Lazarov R., Sheen D., Zhou Z., “Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data”, Fract. Calc. Appl. Anal., 19:1, 69–93, arXiv: [math.NA] 1504.01529 | DOI | MR | Zbl
[23] Gao G. H., Sun Z. Z., Zhang H. W., “A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications”, J. Comput. Phys., 259 (2014), 33–50 | DOI | MR | Zbl
[24] Samarskii A. A., The Theory of Difference Schemes, Pure and Applied Mathematics, Marcel Dekker, 240, Marcel Dekker Inc., New York, 2001, 786 pp. | MR | Zbl
[25] Gao G. H., Sun Z. Z., “A compact finite difference scheme for the fractional sub-diffusion equations”, J. Comput. Phys., 230:3 (2011), 586–595 | DOI | MR | Zbl