Continuum approach to high-cycle fatigue. The finite life-time case with stochastic stress history
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 452-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider continuum approach for high-cycle fatigue in the case where life-time is finite. The method is based on differential equations and all basic concepts are explained. A stress history is assumed to be a stochastic process and this leads us to the theory of stochastic differential equations. The life-time is a quantity, which tells us when the breakdown of the material happens. In this method, it is naturally a random variable. The basic assumption is, that the distribution of the life-time is log-normal or Weibull. We give a numerical basic example to demonstrate the method.
Keywords: high-cycle fatigue, life-time
Mots-clés : evolution equation.
@article{VSGTU_2019_23_3_a3,
     author = {H. Orelma},
     title = {Continuum approach to high-cycle fatigue. {The} finite life-time case with stochastic stress history},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {452--463},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a3/}
}
TY  - JOUR
AU  - H. Orelma
TI  - Continuum approach to high-cycle fatigue. The finite life-time case with stochastic stress history
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2019
SP  - 452
EP  - 463
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a3/
LA  - en
ID  - VSGTU_2019_23_3_a3
ER  - 
%0 Journal Article
%A H. Orelma
%T Continuum approach to high-cycle fatigue. The finite life-time case with stochastic stress history
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2019
%P 452-463
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a3/
%G en
%F VSGTU_2019_23_3_a3
H. Orelma. Continuum approach to high-cycle fatigue. The finite life-time case with stochastic stress history. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 23 (2019) no. 3, pp. 452-463. http://geodesic.mathdoc.fr/item/VSGTU_2019_23_3_a3/

[1] Bolotin V., Mechanics of Fatigue, CRC Mechanical Engineering Series, CRC Press, Boca Raton, 1999

[2] Suresh S., Fatigue of Materials, Cambridge University Press, Cambridge, 1998

[3] Murakami Y., Metal Fatigue. Effects of Small defects and Nonmetallic Inclusions, Elsevier Science, Amsterdam, 2002 | DOI

[4] Sines G., Failure of materials under combined repeated stresses with superimposed static stresses, Tech. Rep. 3495, NACA, Washington, USA, 1955 https://digital.library.unt.edu/ark:/67531/metadc59791/

[5] Findley W., “A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending”, J. Eng. Ind., 81:4 (1959), 301–305 | DOI

[6] Dang Van K., “Macro-micro approach in high-cycle multiaxial fatigue”, Advances in Multiaxial Fatigue, Americal Society for Testing and Materials, 1191, eds. D. McDowell, J. Ellis, ASTM International, West Conshohocken, PA, 1993, 120–130 | DOI

[7] Carpinteri A., Spagnoli A., “Multiaxial high-cycle fatigue criterion for hard metals”, Int. J. Fatigue, 23:2 (2001), 135–145 | DOI

[8] Papadopoulos I. V., “Long life fatigue under multiaxial loading”, Int. J. Fatigue, 23:10 (2001), 839–849 | DOI

[9] Ottosen N., Stenström R., Ristinmaa M., “Continuum approach to high-cycle fatigue modeling”, Int. J. Fatigue, 30:6 (2008), 996–1006 | DOI | Zbl

[10] Brighenti R., Carpinteri A., Vantadori S., “Fatigue life assessment under a complex multiaxial load history: an approach based on damage mechanics”, Fatigue Fract. Eng. Mater. Struct., 35:2 (2012), 141–153 | DOI

[11] Brighenti R., Carpinteri A., Corbari N., “Damage mechanics and Paris regime in fatigue life assessment of metals”, Int. J Pres. Ves. Pip., 104 (2013), 57–68 | DOI

[12] Holopainen S., Kouhia R., Saksala T., “Continuum approach for modeling transversely isotropic high-cycle fatigue”, Eur. J. Mech. A-Solid, 60 (2016), 183–195 | DOI | MR | Zbl

[13] Ottosen N., Ristinmaa M., Kouhia R., “Enhanced multiaxial fatigue criterion that considers stress gradient effects”, Int. J. Fatigue, 116 (2018), 128–139 | DOI

[14] Weibull W., A statistical theory of strength of materials, Ingeniörsvetenskapsakademiens handlingar, 151, Generalstabens Litografiska Anstalts Förlag, Stockholm, 1939

[15] Bomas H., Linkewitz T., Mayr P., “Application of a weakest-link concept to the fatigue limit of the bearing steel SAE 52100 in a bainitic condition”, Fatigue Fract. Eng. Mater. Struct., 22:9 (1999), 733–741 | DOI

[16] Böhm J., Heckel K., “Die Vorhersage der Dauerschwingfestigkeit unter Berücksichtigung des statistischen Größeneinflusses”, Materialwissenschaft und Werkstofftechnik, 13:4 (1982), 120–128 (In German) | DOI

[17] Flaceliere L., Morel F., “Probabilistic approach in high-cycle multiaxial fatigue: volume and surface effects”, Fatigue Fract. Eng. Mater. Struct., 27:12 (2004), 1123–1135 | DOI

[18] Wormsen A., Sjödin B., Härkegard G., Fjeldstad A., “Non-local stress approach for fatigue assessment based on weakest-link theory and statistics of extremes”, Fatigue Fract. Eng. Mater. Struct., 30:12 (2007), 1214–1227 | DOI

[19] Nieslony A., Macha E., Spectral Method in Multiaxial Random Fatigue, Lecture Notes in Applied and Computational Mechanics, 33, Springer, Berlin, Heidelberg, 2007 | DOI | Zbl

[20] Kratz M. F., “Level crossings and other level functionals of stationary Gaussian processes”, Probab. Surveys, 3 (2006), 230–288, arXiv: [math.PR] math/0612577 | DOI | MR | Zbl

[21] Frondelius T., Kaarakka T., Kaleva O., Kouhia R., Orelma H., Vaara J., “Continuum model for fatigue”, 2019 (to appear) (In Finnish)

[22] Frondelius T., Kaarakka T., Kouhia R., Mäkinen J., Orelma H., Vaara J., “Evolution equation based high-cycle fatigue model with stress history modelled as stochastic process”, Proc. of 31st Nordic Seminar on Computational Mechanics — NSCM31, 2018 http://congress.cimne.com/NSCM-31/admin/Files/FileAbstract/a413.pdf

[23] Jussila J., Holopainen S., Kaarakka T., Kouhia R., Mäkinen J., Orelma H., Ottosen N., Ristinmaa M., Saksala T., “A new paradigm for fatigue analysis — evolution equation based continuum approach”, Rakenteiden Mekaniikka = Journal of Structural Mechanics, 50:3 (2017), 333–336 | DOI

[24] Kaleva O., Kouhia R., Orelma H., “Continuum approach to high-cycle fatigue: Weibull distributed lifetime”, Advanced Problems in Mechanics (APM 2019), Proc. of International Summer School–Conference (June 24–29, 2019, St. Petersburg, Russia), St. Petersburg, 2019 (to appear)

[25] Shampine L. F., “Solving $0= F (t, y (t), y'(t))$ in Matlab”, J. Numer. Math., 10 (2002), 291–310 | DOI | MR | Zbl

[26] Jazwinski A., Stochastic processes and filtering theory, Dover Publications, Mineola, NY, 2007 | Zbl

[27] Nelson W., Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, Wiley Series in Probability and Statistics, Wiley, New York, 1990 | DOI

[28] Johnson N., Kotz S., Balakrishnan N., Continuous Univariate Distributions, v. 1, Wiley, New York, 1994 ; v. 2, Wiley, New York, 1995 | MR | Zbl | Zbl