On differential operators and differential equations on torus
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 607-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider periodic boundary value problems for a differential equation whose coefficients are trigonometric polynomials. The spaces of generalized functions are constructed, in which the problems considered have solutions, in particular, the solvability space of a periodic analogue of the Mizohata equation is constructed. A periodic analogue and a generalization of the construction of a nonstandard analysis are constructed, containing not only functions, but also functional spaces. As an illustration of the statement that not all constructions on a torus lead to simplification compared to a plane, a periodic analogue of the concept of a hypoelliptic differential operator is considered, where number-theoretic properties are significant. In particular, it turns out that if a polynomial with integer coefficients is irreducible in the rational field, then the corresponding differential operator is hypoelliptic on the torus.
Keywords: differential operator on torus, linear differential equation on torus, nonstandard analysis
Mots-clés : Mizohata equation, hypoellipticity.
@article{VSGTU_2018_22_4_a0,
     author = {V. P. Burskii},
     title = {On differential operators and differential equations on torus},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {607--619},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a0/}
}
TY  - JOUR
AU  - V. P. Burskii
TI  - On differential operators and differential equations on torus
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2018
SP  - 607
EP  - 619
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a0/
LA  - ru
ID  - VSGTU_2018_22_4_a0
ER  - 
%0 Journal Article
%A V. P. Burskii
%T On differential operators and differential equations on torus
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2018
%P 607-619
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a0/
%G ru
%F VSGTU_2018_22_4_a0
V. P. Burskii. On differential operators and differential equations on torus. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 4, pp. 607-619. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_4_a0/

[1] Bers L., John F., Schechter M., Partial differential equations, Lectures in Applied Mathematics, Amer. Math. Soc., Providence, R.I., 1979, xiii+343 pp. | MR | Zbl

[2] Dezin A. A., Obshchie voprosy teorii granichnykh zadach [General questions of the theory of boundary value problems], Nauka, Moscow, 1980, 208 pp. (In Russian) | Zbl

[3] Ptashnik B. I., Nekorrektnye granichnye zadachi dlia differentsial'nykh uravnenii s chastnymi proizvodnymi [Ill-Posed Boundary-Value Problems for Partial Differential Equations ], Nauk. dumka, Kiev, 1984, 264 pp. (In Russian)

[4] Lax P. D., “On Cauchy's problem for hyperbolic equations and the differentiability of elliptic equations”, Comm. Pure Appl. Math., 8:4 (1955), 615–633 | DOI | MR | Zbl

[5] Bourbaki N., Elements of mathematics. Topological vector spaces, Springer Verlag, Berlin, 1987, vii+364 pp. | MR | Zbl

[6] Hörmander L., The analysis of linear partial differential operators. II: Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, 257, Springer Verlag, Berlin, 1983, viii+391 pp. | MR | Zbl

[7] Lewy H., “An example ol a smooth linear partial differential equation without solution”, Ann. Math., 66:1 (1957), 155–158 | DOI | MR

[8] Grushin V. V., “A differential equation without a solution”, Math. Notes, 10:2 (1971), 499–501 | DOI | MR | Zbl

[9] Garabedian P. R., “An unsolvable equation”, Proc. Amer. Math. Soc., 25:1 (1970), 207–208 | DOI | MR | Zbl

[10] Mizohata S., “Solutions nulles et solution non analytiques”, J. Math. Kyoto Univ., 1:2 (1962), 271–302 | DOI | MR | Zbl

[11] Fedoriuk M. V., Metod perevala [The pass method], Nauka, Moscow, 1977, 368 pp. (In Russian) | MR

[12] Hörmander L., Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, 116, Springer Verlag, Berlin, 1963, vii+285 pp. | MR | Zbl

[13] Bukhshtab A. A., Teoriia chisel [Number theory], Prosveshchenie, Moscow, 1966, 384 pp. (In Russian) | MR

[14] Davis M., Applied nonstandard analysis, Pure and Applied Mathematics, John Wiley Sons, New York, 1977, xii+181 pp. | MR | Zbl