Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2018_22_3_a7, author = {V. V. Privalova and E. Yu. Prosviryakov}, title = {Couette--Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid,}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {532--548}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a7/} }
TY - JOUR AU - V. V. Privalova AU - E. Yu. Prosviryakov TI - Couette--Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2018 SP - 532 EP - 548 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a7/ LA - en ID - VSGTU_2018_22_3_a7 ER -
%0 Journal Article %A V. V. Privalova %A E. Yu. Prosviryakov %T Couette--Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid, %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2018 %P 532-548 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a7/ %G en %F VSGTU_2018_22_3_a7
V. V. Privalova; E. Yu. Prosviryakov. Couette--Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid,. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 22 (2018) no. 3, pp. 532-548. http://geodesic.mathdoc.fr/item/VSGTU_2018_22_3_a7/
[1] Gershuni G. Z., Zhukhovitskii E. M., Convective Stability of Incompressible Fluids, Keter Publishing House, Jerusalem, 1976, vi+330 pp. https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB255645.xhtml
[2] Drazin T., Introduction to Hydrodynamic Stability, Cambridge University Press, Cambridge, 2002, xviii+258 pp. | DOI | MR | Zbl
[3] Andreev V. K., Gaponenko Ya. A., Goncharova O. N., Pukhnachev V. V., Mathematical Models of Convection, De Gruyter Studies in Mathematical Physics, 5, De Gryuter Publ., Berlin, Boston, 2012, xvi+420 pp. | DOI | MR
[4] Nepomnyashchy A., Simanovskii I., Legros J. C., Interfacial Convection in Multilayer System, Springer-Verlag, New York, 2012, xiii+498 pp. | DOI | MR
[5] Shtern V., Counterflows. Paradoxical Fluid Mechanics Phenomena, Cambridge University Press, Cambridge, 2012, xiv+470 pp. | DOI | MR | Zbl
[6] Aristov S. N., Shvarts K. G., Vortical Flows of the Advective Nature in a Rotating Fluid Layer, Perm State Univ., Perm, 2006, 155 pp. (In Russian)
[7] Aristov S. N., Shvarts K. G., Vortical Flows in Thin Fluid Layers, Vyatka State Univ., Kirov, 2011, 207 pp. (In Russian)
[8] Aristov S. N., Shvarts K. G., “Convective heat transfer in a locally heated plane incompressible fluid layer”, Fluid Dyn., 48:3 (2013), 330–335 | DOI | MR | Zbl
[9] Aristov S. N., Knyazev D. V., “Localized convective flows in a nonuniformly heated liquid layer”, Fluid Dyn., 49:5 (2014), 565–575 | DOI | MR | Zbl
[10] Ryzhkov I. I., Thermodiffusion in Mixtures: Equations, Symmetries, Solutions and their Stability, SB RAS Publ., Novosibirsk, 2013, 199 pp. (In Russian)
[11] Sidorov A. F., “Two classes of solutions of the fluid and gas mechanics equations and their connection to traveling wave theory”, J. Appl. Mech. Tech. Phys., 30:2 (1989), 197–203 | DOI | MR
[12] Andreev V. K., Cheremnykh E. N., “The joint creeping motion of three viscid liquids in a plane layer: A priori estimates and convergence to steady flow”, J. Appl. Ind. Math., 10:1 (2016), 7–20 | DOI | MR | Zbl
[13] Vlasova S. S., Prosviryakov E. Yu., “Two-dimensional convection of an incompressible viscous fluid with the heat exchange on the free border”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 567–577 | DOI | Zbl
[14] Aristov S. N., Prosviryakov E. Yu., “On one class of analytic solutions of the stationary axisymmetric convection Bénard–Maragoni viscous incompreeible fluid”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 3(32), 110–118 (In Russian) | DOI | Zbl
[15] Aristov S. N., Privalova V. V., Prosviryakov E. Yu., “Stationary nonisothermal Couette flow. Quadratic heating of the upper boundary of the fluid layer”, Rus. J. Nonlin. Dyn., 12:2 (2016), 167–178 (In Russian) | DOI | MR | Zbl
[16] Privalova V. V., Prosviryakov E. Yu., “Exact solutions for a Couette–Hiemenz creeping convective flow with linear temperature distribution on the upper boundary”, Diagnostics, Resource and Mechanics of Materials and Structures, 2018, no. 2, 92–109 (In Russian) | DOI
[17] Privalova V. V., Prosviryakov E. Yu., “Steady convective Coutte flow for quadratic heating of the lower boundary fluid layer”, Rus. J. Nonlin. Dyn., 14:1 (2018), 69–79 (In Russian) | DOI | MR
[18] Aristov S. N., Prosviryakov E. Yu., “Nonuniform convective Couette flow”, Fluid Dyn., 51:5 (2016), 581–587 | DOI | MR | Zbl
[19] Deryabina M. S., Martynov S. I., “Periodic flow of a viscous fluid with a predetermined pressure and temperature gradient”, Rus. J. Nonlin. Dyn., 14:1 (2018), 81–97 (In Russian) | DOI | MR
[20] Ostroumov G. A., Free convection under the condition of the internal problem, NASA Technical Memorandum 1407, National Advisory Committee for Aeronautics, Washington, 1958
[21] Birikh R. V., “Thermocapillary convection in a horizontal layer of liquid”, J. Appl. Mech. Tech. Phys., 1966, no. 7, 43–44 | DOI
[22] Shliomis M. I., Yakushin V. I., “The Convection in a Two-layer Binary System with Evaporation”, Hydrodynamics, 1972, no. 4, 129–140 (In Russian)
[23] Aristov S. N., Prosviryakov E. Yu., “A new class of exact solutions for three-dimensional thermal diffusion equations”, Theor. Found. of Chem. Engin., 50:3 (2016), 286–293 | DOI
[24] Pukhnachev V. V., “Non-stationary analogues of the Birikh solution”, Izv. Alt. Gos. Univ., 2011, no. 1-2, 62–69 (In Russian)
[25] Pukhnachev V. V., “Exact solutions of the hydrodynamic equations derived from partially invariant solutions”, J. Appl. Mech. Tech. Phys., 44:3 (2003), 317–323 | DOI | MR | Zbl
[26] Aristov S. N., Prosviryakov E. Yu., Spevak L. F., “Nonstationary laminar thermal and solutal Marangoni convection of a viscous fluid”, Comp. Cont. Mech., 8:4 (2015), 445–456 (In Russian) | DOI
[27] Goncharova O. N., “Exact solution of linearized equations of convection of a weakly compressible fluid”, J. Appl. Mech. Tech. Phys, 46:2 (2005), 191–201 | DOI | MR | Zbl
[28] Bratsun D. A., Vyatkin V. A., Mukhamatullin A. R., “On exact nonstationary solutions of equations of vibrational convection”, Comp. Cont. Mech., 10:4 (2017), 433–444 (In Russian) | DOI
[29] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of an incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 180–196 (In Russian) | DOI | Zbl
[30] Burmasheva N. V., Prosviryakov E. Yu., “A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 736–751 (In Russian) | DOI | Zbl
[31] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1:1 (1957), 391–395 ; | DOI | MR | Zbl | DOI
[32] Aristov S. N., Knyazev D. V., Polyanin A. D., “Exact solutions of the Navier-Stokes equations with the linear dependence of velocity components on two space variables”, Theor. Found. Chem. Eng., 43:5 (2009), 642–662 | DOI
[33] Hiemenz K., “Die Grenzschicht an einem in den gleichförmigen Flüssigkeit-sstrom eingetauchten geraden Kreiszylinder”, Dingler’s Politech. J., 326 (1911), 321–324
[34] Pukhnachev V. V., “Group properties of the Navier–Stokes equations in the plane case”, J. Appl. Math. Tech. Phys., 1960, no. 1, 83–90
[35] Aristov S. N., Knyazev D. V., “Viscous fluid flow between moving parallel plates”, Fluid Dyn., 47:4 (2012), 476–61 | DOI | MR | Zbl
[36] Petrov A. G., “Exact solution of the Navier–Stokes equations in a fluid layer between the moving parallel plates”, J. Appl. Math. Tech. Phys., 53:5 (2012), 642–646 | DOI | MR | Zbl
[37] Tsai R., Huang J. S., “Heat and mass transfer for Soret and Dufour’s effects on Hiemenz flow through porous medium onto a stretching surface”, Int. J. Heat Mass Trans., 52:9-10 (2009), 2399–2406 | DOI | Zbl
[38] Afify A. A., “Similarity solution in MHD: effects of thermal diffusion and diffusion thermo effects on free convective heat and mass transfer over a stretching surface considering suction or injection”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 2202–2214 | DOI | Zbl
[39] Beg O. A., Bakier A. Y., Prasad V. R., “Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects”, Comput. Mater. Sci., 46:1 (2009), 57–65 | DOI
[40] Osalusi E., Side J., Harris R., “Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer of a steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating”, Int. Commun. Heat Mass Trans., 35:8 (2008), 908–915 | DOI
[41] Prasolov V. V., Polynomials, Algorithms and Computation in Mathematics, 11, Springer-Verlag, Berlin, 2004, xiv+301 pp. | DOI | MR | Zbl